Generalized Single Packet Authorization for Cloud Computing Environments

Michael Rash

http://www.cipherdyne.org/

ShmooCon

February, 2013

Copyright (C) Michael Rash 2013

Agenda

- Brief Port Knocking / Single Packet
 Authorization Primer
- Lengthy demo SPA integrated into Amazon's Cloud
- General integration points for Cloud providers
- fwknop-2.5 release HMAC-SHA256 support
- Where is SPA headed?

PK/SPA Assertion

There is a security benefit in service concealment behind a default-drop packet filter + plus a lightweight passive authentication layer

(Not a defense for client-side vulnerabilities)

No Shortage of Server Vulns

• Cisco rsh vuln (HD Moore: "Hacking Like It's 1985"):

http://goo.gl/gL6ZJ (https://community.rapid7.com/community/metasploit/blog...)

• UPnP vulnerabilities (affecting millions of devices):

https://community.rapid7.com/docs/DOC-2150

- SHODAN enumeration of Internet connected SCADA devices: http://goo.gl/9OZly (https://threatpost.com/en_us/blogs/shodan-search-engine...)
- Barracuda Networks SSH backdoors (Stefan Viehböck):

http://krebsonsecurity.com/2013/01/backdoors-found-in-barracuda-networks-gear/

Typical PK/SPA Work Flow

- User wants SSH access behind PK/SPA firewall
- User executes PK/SPA client
- Firewall is reconfigured to allow SSH connections from the specified IP
- PK/SPA packet(s) passively monitored
- PK/SPA packet(s) never acknowledged in any way
- SSHD cannot be scanned for
- Think beyond SSHD

General Goal of fwknop

Solve PK limitations while simultaneously retaining its benefits

The fwknop Design

- Firewall default drop stance for protected services
- Passive collection of authentication information (libpcap*)
- Support for Symmetric and Asymmetric ciphers
- Encrypted and non-replayable SPA packets
 - Do not want anything that trusts an IP in the network layer header
- Server portable to embedded systems
 - Do not want a heavyweight interpreted language (this is a trade off)
- Server portable to different firewall architectures and router ACL languages
 - Make sophisticated use of NAT
- Client portable to everything from Cygwin to the iPhone
 - Do not want to require raw socket manipulation of packet headers or admin privileges
- Minimize library dependencies

Things Aren't Always as They Seem

- User gains access to NetB from NetA with SPA
- Attacker: Which system to attack?
- SPA server can be anywhere on the routing path of an SPA packet not just the SPA destination IP
- SPA packet source IP can be spoofed too
- Neither the SPA source nor destination IP matters

Tutorial

Single Packet Authorization: A Comprehensive Guide to Strong Service Hardening with fwknop

http://www.cipherdyne.org/fwknop/docs/fwknop-tutorial.html

SPA in the Amazon Cloud

http://aws.amazon.com/

Copyright (C) Michael Rash 2013

Amazon AWS User Agreement

"...**4.2 Other Security and Backup**. You are responsible for properly configuring and using the Service Offerings and taking your own steps to maintain appropriate security, protection and backup of Your Content, *which may include the use of encryption technology to protect Your Content from unauthorized access* and routine archiving Your Content..."

http://aws.amazon.com/agreement/

Amazon VPC Networks

The Perfect SPA Use Case

- Microsoft RDP vulnerability last year (CVE-2012-0002)
- Full remote code execution potential, although Metasploit only has a DoS module
- For a time, Cloud provider Windows images were vulnerable

• Problem: fwknop does not support a Windows firewall

Amazon VPC + SPA Setup

Copyright (C) Michael Rash 2013

fwknopd Configuration

 We're going to create an SPA "jump" host gateway

cat /etc/fwknop/fwknopd.conf

PCAP_FILTER	udp port 40001;
ENABLE_IPT_FORWARDING	Y;
ENABLE_IPT_LOCAL_NAT	Y;
ENABLE_IPT_SNAT	Y;
SNAT_TRANSLATE_IP	10.0.0.12 ;

cat /etc/fwknop/access.conf
SOURCE: ANY;
KEY: test1234;
FORCE_NAT: 10.0.0.12 22;
REQUIRE_SOURCE: Y;
SOURCE: ANY;
KEY: 1234test;

REQUIRE_SOURCE: Y;

Demo (video)

Demo: Key Points

- Do not have any direct integration with AWS border controls
- All SPA principles apply
 - Default-drop firewall policy cannot scan for a target
 - Passive packet acquisition SPA packets are never acknowledged
 - Replay detection
 - Temporary firewall reconfiguration for service access
- Access to *any* service on *any* VPC system all through a single routable Elastic IP
 - SPA hardened "jump" host
 - Sophisticated usage of NAT
 - Accessed hosts don't even need a route to the Internet (DNAT + SNAT usage)

"Ghost" services

- Scanners only see Apache (or whatever), but SPA allows access to SSHD or any other service
- iptables SPA NAT rules intercept connections out from under local userspace services
- fwknop has supported ghost services since the old perl days

Can We Generalize This to Other Cloud Computing Environments?

Some Observations About Amazon

- Could fully control and configure internal OS images (install software, manipulate firewall rules, etc.)
- No (apparent) specialized filtering in AWS border ACL
- Not restricted to accessing VPC hosts with specialized applications controlled by Amazon – any application that is compatible with ACL configuration will work
- The above translates to greater ease of use and deployment for Amazon customers independent of SPA or anything else – e.g. it is a good architecture that other Cloud providers will emulate

SPA Integration with Arbitrary Cloud IaaS Providers

- "Useful" Cloud infrastructures provide remote access via SSH/RDP/VPN protocol to customizable OS images
 - Universal HTTP/HTTPS for Cloud usage is not generally compatible with SPA
- Cloud providers usually implement a network ACL capability
 - May or may not be customizable by the user
 - SPA client must communicate in a compatible fashion
- We don't necessarily need NAT capabilities in the SPA implementation (support less complex cloud environments)
- IaaS (Infrastructure as a Service) providers are generally SPA-compatible

Cloud Providers

• Wikipedia currently lists 129 different Cloud providers:

http://en.wikipedia.org/wiki/Category:Cloud_computing_providers

Private Clouds

- Bare metal owned by a private entity
- Cloud layer provided by open source or proprietary computing stack
- SPA is likely compatible in two ways:
 - Integration with raw OS underneath the virtualization layer
 - Integration with guest OS instances (e.g. similar to AWS deployment)

Hybrid Clouds

• SPA is likely compatible *bi-directionally* if public portion is compatible

Evaluating Cloud IaaS + SPA Compatibility

Moving Up the Cloud Stack

• We've shown SPA integrates well with IaaS, but what about PaaS (Platform as a Service) and SaaS (Software as a Service) models?

Moving Up the Cloud Stack (cont'd)

- SPA PaaS integration to the extent that the base infrastructure is under user control
 - Amazon Elastic Beanstalk
- SaaS not generally SPA compatible
 - Users do not have infrastructure control
 - Would require massive integration effort, and drastically changes usage model

Amazon Elastic Beanstalk

 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/GettingStart ed.Walkthrough.html

Edit Configuration					Cancel 🗙
Pick a saved configuration and/or edit the a click "Apply Changes".	ttributes	below	. When	you are fin	ished making edits,
Saved Configurations: Default	•				
Server Load Balancer Auto Scaling D	atabase	Notific	ations	Container	
These settings allow you to control your e	nvironme	nt's se	rvers a	nd enable l	ogin. Learn more >>
*EC2 Instance Type	t1.micro Note: Pic compute	k the in , memo	stance ty ry, and o	ype that best cost needs.	meets your
*EC2 Security Groups	elasticb	eanstall	-default		
*Existing Key Pair	Note: Ke	v nairs	are used	to enable lo	ain to your
	instance	, pano			gin to your
*Monitoring Interval	5 minut	e 🔻			
*Custom AMI ID	ami-5e4	db237			
Note: *It may take a few minutes to see cleavironment.	hanges t	o thes	e optior	ns take effe	ect in your
				Car	ncel Apply Changes

Specialized Cloud Providers

- Cloud storage providers (DropBox, Mozy, etc.)
 - Not generally SPA-compatible (SaaS model)
 - Such providers construct purpose-built cloud infrastructure that is accessed through a dedicated client-side application (web browser or custom app)
- Clouds optimized for computing performance (e.g. Penguin Computing)
 - SPA compatibility likely for IaaS portion
 - SPA not generally a good fit for HPC jobs

Further Research...

- To what extent are packet filters used within Cloud computing stacks? (Independent of OS packet filters.)
 - This may hint at direct SPA integration with Cloud software
- Are there natural SPA integration points for distributed computing jobs?
 - If so, is there a security benefit? (Cloud-specific threat modeling.)
 - Are there integration points for admin layers below distributed content distribution services (e.g. Amazon Cloud Front)?
- Do any major IaaS Cloud providers leverage packet filters in ways that are incompatible with SPA? (Probably not.)

fwknop Development

fwknop-2.5 (coming soon)

- HMAC-SHA256
 - HMAC(K,m) = H((K ⊕ opad) || H((K ⊕ ipad) || m))
 - SPA encrypted message = m || HMAC
 - K != encryption key
- fwknop uses the encrypt-then-authenticate paradigm
 - SSH uses encrypt-and-MAC
 - SSL uses MAC-then-encrypt ← Has made the Vaudenay and more recent "Lucky 13" padding oracle attacks possible
 - IPSEC uses encrypt-then-MAC ← INT-CTXT and IND-CCA2 secure

fwknop Vulnerabilities

- CVE-2012-4435 Improper IP validation (requires a valid encryption key to exploit)
- CVE-2012-4436 Client side --last processing overflow (local exploit)
- Fixed since 2.0.3. (Latest release is 2.0.4)
- CREDIT: Fernando Arnaboldi, IOActive. Additional thanks to Erik Gomez for helping to make this auditing effort possible.

What are we doing about this?

- Test suite driven valgrind validation
 - Every new commit is tested against a valgrind baseline
 - Lightweight C code helps a lot here
- SPA packet fuzzer
- Compile time security options
- Usage of static analyzers (e.g. splint, Clang static analyzer, etc.)
- SPA protocol review

SPA Packet Fuzzer

- Builds encrypted SPA packets with malicious payloads
- Series of patches against libfko to remove various constraints and validation steps
- Automatically tested via the test/test-fwknop.pl test suite
- Over 2,000 fuzzing packets currently used in different modes

Test Suite:

./test-fwknop.pl

[build	security]	[client]	Position Independent Executable (PIE)pass	(3)
[build	security]	[client]	stack protected binarypass	(4)
[build	security]	[client]	fortify source functionspass	(5)
[build	security]	[client]	<pre>read-only relocationspass</pre>	(6)
[build	security]	[client]	<pre>immediate bindingpass</pre>	(7)
[build	security]	[server]	Position Independent Executable (PIE)pass	(8)
[build	security]	[server]	stack protected binarypass	(9)
[build	security]	[server]	fortify source functionspass	(10)
[build	security]	[server]	<pre>read-only relocationspass</pre>	(11)
[build	security]	[server]	immediate bindingpass	(12)

• This is enabled via:

- gcc ... -fstack-protector-all -fstack-protector -fPIE -pie -D_FORTIFY_SOURCE=2 -Wl,-z,relro -Wl,-z,now

iPhone + Android fwknop Clients

arrier 🗢 9:09	PM
Fwknop	Client
Allow IP:	0.0.0.0
Access Proto	tcp
Access Port:	22
Server Address	Server
Rijndael Key:	Key
imeout:	60
S	end

Firewall Knock Op	erat	or	31 ам		
Allow IP: 192.	168.	1.179			
Access Protoc	ol:	tcp			
Access Port: 22					
Server Addres	ss:	192.168.1.10	0		
Rijndael Key:	•••	••••	••		
Start ConnectBot 🖌 🖌					
Tap the lock below to send SPA packet					

The Future of fwknop

- Mandatory Access Control support via SELinux and/or AppArmor
- Further cloud computing extensions and integration points
- Privilege separation
- Support for libcap-ng
- UDP listener mode
- Tunneling mode extensions (DNS, HTTP, SMTP, Tor)

Linux Firewalls 2nd Edition To be released in 2014...

Thank You...

- The Amazon Security team
- Damien Stuart developed the original C port
- Fernando Arnaboldi and Erik Gomez (IOActive)
- Franck Joncourt (Debian)
- Sebastien Jeanquier authoritative PK/SPA thesis
- Sean Greven (FreeBSD port)
- Vlad Glagolev (OpenBSD port)

Questions?

mbr@cipherdyne.org

@michaelrash

http://www.cipherdyne.org/fwknop/

Slides:

http://www.cipherdyne.org/talks/ShmooCon_2013_mrash_Cloud_SPA.pdf http://www.cipherdyne.org/talks/ShmooCon_2013_mrash_Cloud_SPA_demo.mpg4

Copyright (C) Michael Rash 2013